A.D.M. COLLEGE FOR WOMEN(AUTONOMOUS)

(Nationally Re-accredited with 'A' Grade by NAAC- 3rd Cycle) NAGAPATTINAM-611 001

DEPARTMENT OF GEOLOGY (For the candidates admitted from the academic year 2021-2022)

B.Sc., GEOLOGY

SYLLABUS

2021-2024

A.D.M COLLEGE FOR WOMEN (AUTONOMOUS), Nagapattinam

UG Programme- B.Sc Computer Science

(For the candidates admitted from 2021 – 2022 onwards)

Bloom'sTaxonomy BasedAssessment Pattern

KnowledgeLevel

K1- Acquire/Remember	K2 –Understanding	K3 –Apply	K4– Analyze	K5–Evaluate	K6 – Create

1.Part I,IIandIII

Theory(External+Internal=75+ 25=100marks)

External/Internal						
Knowledge	Section	Marks	Hrs.	Total	Passing	
Level	Section		111.5.	I otai	Mark	
K1-K3	A(Answer all)	10 ×2 =20				
K3-K6	B(Eitherorpattern)	5 ×5 = 25	3	75	30	
K3-K6	C(Answer 3 out of 5)	3 ×10 =30				

DEPARTMENT OF GEOLOGY

(For the candidates admitted from the academic year 2021-2022)

B.Sc., GEOLOGY

Programme Educational Objectives (PEO):

PEO 1:	To study about surface geologic process and their impact on development of landforms, and ability to identify and interpret landform development.
PEO 2:	Students will use maps (topographic and geologic) to estimate distances, visualise
	landforms, and locate/identify geographic and geologic features.
PEO 3:	Students will identify common minerals in hand samples and in field exposures of
	rock using visual clues and simple tests.
PEO 4:	Students will identify common minerals in hand samples and in field exposures
	using observations of mineral composition and textures.
PEO 5:	To understand public issues in the geological sciences and be ready and able to
	contribute to their resolution.

Programme Outcomes (POs):

On completion of the course the learner will be able

PO 1:	Gain a better understanding of the Plants, Moons and other objects of our solar system in addition to their distribution and dynamical relationship.
PO 2:	Understand elastic and viscous strain in role behaviour, the effects of temperature, pressure and strain rate on rock strength and the mechanism of rock deformation.
PO 3:	Recognize and quantify the physical and optical properties of minerals. Student would understand the Indian Stratigraphy and its age related problems.
DO 4:	
PO 4:	Demonstrate the difference between minerals and ore minerals. Explain the formation of placers and other minerals. Explain the origin of igneous rocks and structures.
PO 5:	Students understand the field basic equipment handling and requitements.
	Understand the compass its uses rock and mineral direction. Understand the student
	using base map latitude and longitude direction. Gains a better understand the field
	writing materials, field sketches and drawings.

Programme Specific Outcomes (PSO):

On completion of the course the learner will be able

PSO 1:	Demonstrate fundamental knowledge of: the physical and chemical properties of
	the lithosphere and hydrosphere (minerals, rocks, soils and water).
PSO 2 :	Geological time and Earth history; and crustal materials and dynamics in the
	context of plate tectonics theory
PSO 3:	Demonstrate skills in: mineral and rock soil identification; interpretation of
	topographic and geologic maps; and interpreting and evaluating geological data,
	hypothesis and ideas.
PSO 4:	Gain an understanding of the social relevance of earth systems.
PSO 5:	Effectively communicate this knowledge and these skills using written and/or oral
	methods.

DEPARTMENT OF GEOLOGY COURSE STRUCTURE OF THE UG PROGRAMME-B.Sc GEOLOGY

Part	Title of the part	No. of Courses	Hours	Credit
Ι	Language Course	4	24	12
II	English Language Course	4	24	12
	Core Course	13	72	65
III	Allied Course	6	28	18
	Major Based Elective	3	15	15
IV	Skill Based Elective	3	6	6
	Non Major Elective	2	4	4
	Extension Activities	0	0	1
	Value Education	1	2	2
	Environmental Studies	1	2	2
V	Soft Skill Development	1	2	2
	Gender Studies	1	1	1
	Total	39	180	140

Passing Minimum

A candidate shall be declared to have passed in each course if she secures not less than 40% marks out of 75 marks (i.e., 30 marks) in the End Semester Examination (SE) and 40% out of 25 marks (i.e., 10 marks) in the Continuous Internal Assessment.(CIA).

A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS), NAGAPATTINAM DEPARTMENT OF GEOLOGY B.Sc., GEOLOGY

Course Structure under CBCS

(For the candidates admitted from the academic year 2021-2022 onwards)

		Course	COURSE	INS. HRS	CREDIT	EXAM HOURS	MA	RKS	TOTAL MARKS
SEM.	PART	Code	COUNSE	шко		HOURS	CIA	SE	WARKS
	Ι	LCTA	Language Course I (LC) Tamil-I	6	3	3	25	75	100
I	II	LCEA	Language English Course I (ELC)	6	3	3	25	75	100
			English-I						
		GUA	Core Course I (CC) The Dynamic Earth	6	6	3	25	75	100
	III	GUC	Core Practical I (CP) Structural Geology and Surveying	3	-	-	-	-	-
		MUA1	Allied Course I (AC) Mathematics I/ Chemistry I	4	3	3	25	75	100
		QUA1	Allied Course I (AC) Mathematics II/Chemistry II	3	-	-	-	-	-
	IV	VE	Value Education	2	2	3	25	75	100
		I	Total	30	17	-	-	-	500
	Ι	LCTB	Language Course II (LC) Tamil-II	6	3	3	25	75	100
Π	II	LCEB	Language English Course II (ELC) English-II	6	3	3	25	75	100
		GUC	Core Course II (CC) Structural Geology	6	6	3	25	75	100
		GUBY	Core Practical I (CP) Structural Geology and Surveying	3	3	3	40	60	100
	III	MUA2/ QUA2Y	Allied Course II (AC) Mathematics II /Chemistry II	2	3	3	25	75	100
		MUA3/ QUA3	Allied Course III (AC) Mathematics III/ Chemistry III	5	3	3	25	75	100
	IV	ES	Environmental Studies	2	2	3	25	75	100
			Total	30	23	-	-	-	500

	Ι	LCTC	Tamil-III	6	3	3	25	75	100
	TT								
	II	LCEC	English-III	6	3	3	25	75	100
ш		GUD	Physical Geology	5	5	3	25	75	100
		GUEY	Palaeontology and	4					
	III		Crystallography	4	-	-	-	-	-
		PUA1	Physics I	5	4	3	25	75	100
		PUA2Y	Physics II (Lab)	2	-	-	-	-	-
	IV	GUE1	Fundamentals of Geology	2	2	3	25	75	100
			Total	30	17	-	-	-	500
	Ι	LCTD	Tamil-IV	6	3	3	25	75	100
	II	LCED	English-IV	6	3	3	25	75	100
		GUF	Palaeontology and	5	_	3	25	75	100
			Crystalligraphy	5	5	3	25	75	100
IV		GUEY	Palaeontology and	2	4	3	40	60	100
	III		Crystalligraphy Practical	2	4	5	40	00	100
	111	PUA2Y	Physics II (Lab)	3	3	3	25	75	100
				5	5	5	23	75	100
		PUA3	Physics III	4	2	3	25	75	100
				4	2	5	25	75	100
	IV	GUS1	Climatology	2	2	3	25	75	100
		GUE2	Introduction to						
			Minerals, Rocks and	2	2	3	25	75	100
			Fossils						
		4	Total		24	-	-	-	800

Sem.	Part	Course Code	Course	Inst Hours/	Credit	Exam	Mar	:ks	Total Marks
				Week		Hours	CIA	SE	
		GUG	Core Course V (CC) Stratigraphy	5	5	3	25	75	100
		GUH	Core Course VI (CC) Mineralogy	5	5	3	25	75	100
V	III	GUIY	Core Practical III (CP) Mineralogy and Applied Geology	4	3	3	40	60	100
v		GUE3	Major Based Elective I (MBE) Hydrology and Environmental Geology	5	5	3	25	75	100
		GUE4	Major Based Elective II (MBE) Remote sensing and Mining Geology	5	5	3	25	75	100
		GUS2	Skill Based Elective II (SBE) Water Quality Analysis	2	2	3	25	75	100
	IV	GUS3	Skill Based Elective III (SBE) Geo statistics and Computer Application	2	2	3	25	75	100
		SSD	Soft Skills Development	2	2	3	25	75	100
			Total	30	29	-	-	-	800
		GUJ	Core Course VII (CC) Igneous Petrology	6	6	3	25	75	100
		GUK	Core Course VIII (CC) Sedimentary Petrology and Metamorphic Petrology	6	6	3	25	75	100
	III	GUL	Core Course IX (CC) Economic Geology	6	6	3	25	75	100
VI		GUMY	Core Practical IV (CP) Petrology and Economic Geology	6	5	3	40	60	100
		GUE5	Major Based Elective III (MBE) Mineral Prospecting and Field Geology	5	5	3	25	75	100
	• •		Extension Activities (EA)	-	1	-	-	-	-
	V	GS	Gender Studies (GS)	1	1	3	25	75	100
			Total	30	30	-	-	-	600
			Grand Total	180	140	-	-	-	3900

Allied I	Allied II
Mathematics or Chemistry	Physics

Semester-I / Core Course-I(CC)	The Dynamic Earth	Course Code: BGA
Instruction Hours : 6	Credits: 6	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Introduction of the geological process that are dynamical	lly
Objectives	involved in the formation of the planet Earth.	
	• To study the evolution of solar system and age of the Earth.	
	• Describe the Earth's interior, including the structure and comp	position.
	• Clearly describe plate tectonics in general term.	
	• To learn about the endogenic process like earthquake, vo	olcanoes and
	orogenic activity.	
UNIT	CONTENT	HOUDS
UNII	CONTENT	HOURS
I	DEFINITION OF GEOLOGY	18
	DEFINITION OF GEOLOGY	
	DEFINITION OF GEOLOGY Definition of Geology – Branches of Geology – Applied	
	DEFINITION OF GEOLOGY Definition of Geology – Branches of Geology – Applied Geology – Geology in the service of man. The Solar system :– The	
	DEFINITION OF GEOLOGY Definition of Geology – Branches of Geology – Applied Geology – Geology in the service of man. The Solar system :– The Planets – Meteorites – Asteroids – Satellites – Comets;Evolution of	
	DEFINITION OF GEOLOGY Definition of Geology – Branches of Geology – Applied Geology – Geology in the service of man. The Solar system :– The Planets – Meteorites – Asteroids – Satellites – Comets;Evolution of the Solar system – Nebular hypothesis – Planetesimal hypothesis –	
	DEFINITION OF GEOLOGY Definition of Geology – Branches of Geology – Applied Geology – Geology in the service of man. The Solar system :– The Planets – Meteorites – Asteroids – Satellites – Comets;Evolution of the Solar system – Nebular hypothesis – Planetesimal hypothesis – Tidal hypothesis – Von Weiszacker's hypothesis and Dust Cloud	
	DEFINITION OF GEOLOGY Definition of Geology – Branches of Geology – Applied Geology – Geology in the service of man. The Solar system :– The Planets – Meteorites – Asteroids – Satellites – Comets;Evolution of the Solar system – Nebular hypothesis – Planetesimal hypothesis – Tidal hypothesis – Von Weiszacker's hypothesis and Dust Cloud hypothesis. The age of the earth – sedimentation method - salinity	
	DEFINITION OF GEOLOGY Definition of Geology – Branches of Geology – Applied Geology – Geology in the service of man. The Solar system :– The Planets – Meteorites – Asteroids – Satellites – Comets;Evolution of the Solar system – Nebular hypothesis – Planetesimal hypothesis – Tidal hypothesis – Von Weiszacker's hypothesis and Dust Cloud hypothesis. The age of the earth – sedimentation method - salinity method – Kelvin's rate of cooling method – Radiometric methods:	
	DEFINITION OF GEOLOGY Definition of Geology – Branches of Geology – Applied Geology – Geology in the service of man. The Solar system :– The Planets – Meteorites – Asteroids – Satellites – Comets;Evolution of the Solar system – Nebular hypothesis – Planetesimal hypothesis – Tidal hypothesis – Von Weiszacker's hypothesis and Dust Cloud hypothesis. The age of the earth – sedimentation method - salinity method – Kelvin's rate of cooling method – Radiometric methods: Uranium – lead, Thorium – Lead and Potassium – Argon methods –	
Ι	DEFINITION OF GEOLOGY Definition of Geology – Branches of Geology – Applied Geology – Geology in the service of man. The Solar system :– The Planets – Meteorites – Asteroids – Satellites – Comets;Evolution of the Solar system – Nebular hypothesis – Planetesimal hypothesis – Tidal hypothesis – Von Weiszacker's hypothesis and Dust Cloud hypothesis. The age of the earth – sedimentation method - salinity method – Kelvin's rate of cooling method – Radiometric methods: Uranium – lead, Thorium – Lead and Potassium – Argon methods – A note on C14methods.	18

	waves – Seismograph and Seismogram – Distribution of	
	Earthquakes – Prediction of Earthquakes – Tsunami – Earthquakes	
	in India. Detailed study of the structure and composition of Earth's	
	interior.	
III	VOLCANOES	18
	Definition – types – phases – solid, liquids and gaseous	
	products, distribution - topographic forms. Causes of volcanism -	
	effects of volcanic activity - prediction of volcanoes. Mass	
	movements - definition - classification - slow movements: soil	
	creep, rock creep and soliflucation. Rapid movements: earth flows,	
	rock falls and landslides. Causes and remedial measures.	
IV	OCEANS	18
	Distribution of continents and oceans - Characters of	
	continents and Oceans - Continental margin - Ocean basin -	
	Continental drift: Wegner and Taylor hypothesis - Sea floor	
	spreading - Concept of plate tectonics - Different kinds of plate	
	margins – Evidences in favor and against the concepts of	
	Continental Drift and Plate Tectonics - Mid Oceanic Ridges -	
	Submarine trenches and Transform faults.	
V	MOUNTAINS	18
	Classification – life cycle of mountains – origin of mountains	
	- geosynclines - Stille's, Kay's Strahler's and Schuchert's	
	classification of geosynclines - characters and distribution of	
	geosynclines - types of pleateaus and plains. IsostasyPrat's and	
	Airy's hypothesis - causes, effects and evidences of sea level	
	changes.	
VI	The Solar system :- The Planets - Meteorites -	-
	Asteroids – Satellites – Comets; Evolution of the Solar system –	
	Nebular hypothesis – Planetesimal hypothesis – Tidal	
	hypothesis – Von Weiszacker's hypothesis and Dust Cloud	
	hypothesis. Isostasy Prat's and Airy's hypothesis – causes,	
	effects and evidences of sea level changes.	

Text Books:

- 1. Radhakrishanan V., General Geology., V.V.P.Press, 1996.
- 2. Mahapatra, G.B., A text book of Geology, CBS, Delhi, 2015.
- 3. Arthur Holmes, Principles of Physical Geology, Thomas Nelson & sons, London.1993.
- 4. Philip G. Worcester A textbook of geomorphology, D. Van Nostrand Co., London1948.

Reference Books:

- 1. W. D. Thornbury, A text book of geomorphology, D. Van Nostrand co., London, 2004.
- 2. A.L. Bloom, General Geology, V.V.P.Press, 1978.
- 3. L.D. Leet& Judson Physical Geology, Prentice Hall, India, 1958.

Web resources:

- <u>www.uj.ac.za/library/bindery</u>
- https:llen.wikisource.org/wiki/portal:geology

Course Outcomes:

On completion of the course, students should be able to

CO 1: Gain a better understanding of the Planets, Moons and other objects of our solar system in addition to their distribution and dynamical relationships.

CO 2: Understanding the geological origins of especially important natural hazards including Earthquakes, Tsunami, Volcanic eruptions andLandslides.

CO 3: Understand platetectonics and its central role as the unifying theory ofgeology.

CO 4: Articulate the relationship between Volcanoes, Earthquakes, Mountain belts and Tectonic plate boundaries.

CO 5: Understand the nature of the ocean floor.

СО			РО					PSO		
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	Μ	Μ	S	S	S	М	S	М
CO 2	S	S	Μ	М	S	М	S	М	S	М
CO 3	Μ	S	Μ	Μ	S	М	S	М	S	М
CO 4	S	S	М	М	S	М	S	М	S	М
CO 5	S	М	Μ	М	S	S	S	М	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-I & II / Core Practical-I	Structural Geology and Surveying	Course Code: BGBY
Instruction Hours: 6	Credits: 3	Exam Hours: 3
Internal Marks: 40	External Marks: 60	Total Marks: 100

Course Objectives:

- To know about the Exercises to predict the trends of the outcrop of horizontal, vertical and inclined beds with respect totopography
- Reading of solidfold and fault, maps construction and problems relating to true dip and apparentdip.
- To read the marginal in formations of toposheets.
- To become familiar with geological signs and symbols.
- To learn the practical aspects of survey instruments.

STRUCTURAL GEOLOGY

Contour maps and their interpretation. Exercises to predict trends of the outcrop of Horizontal, vertical anticline beds with respect to topography – reading of solid conformable maps – deciphering dip and strike of outcrops – construction of map with three points over a bedding plane are given construction of vertical sections-order of super position – vertical thickness of formations.

Reading of solid fold and fault maps construction of vertical sections – Determination of throw of vertical faults. Reading of unconformable solid maps – construction of sections. Reading of solid maps of areas when more than one structure is involved – determination of ages of structures and intrusions – narrate geological history – problems relating to true dip and apparent dip. Determination of vertical and true thickness by calculations.

Cartographic appreciation of Survey of India (SOI) Topographic sheets: Description of features in SOI's toposheet: Extramarginal, marginal, intramarginal information, major conventional signs and symbols, physical and socio-culturalfeatures.

SURVEYING

Chain Survey – prismatic compass survey – plane table survey – leveling Clinometers Compass and Brunton Compass:- to find out dip and strike of the beds . GPS:- Fundamentals and applications

Course Outcomes

On completion of the course students should be able to

CO 1: Read geologic maps and solve simple map problems using strike lines and cross sections for areas showing dipping strata, unconformities, faults andfolds.

CO 2: Establish the basic structure, and the geological history, of a region from its geologicalmaps.

CO 3: Survey of topographic features.

CO 4: Interpret the geologic structure from a geologic maps.

CO 5: Measure the attitude of beds in the field.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

CO			PO					PSO		
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	М	S	S	М	S	S	S	М
CO 2	М	S	М	S	S	Μ	S	S	S	М
CO 3	S	S	S	S	S	Μ	S	S	S	М
CO 4	S	S	S	S	S	М	S	S	S	М
CO 5	S	S	S	S	S	М	S	М	S	М

- **S** Strongly Correlated
- **M** Moderately Correlated
- **W** Weakly Correlated
- **N No Correlation**

Semester-II/ Core Course-II	Structural Geology	Course Code: BGC
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply K4-Analyze	
]]]	K5-Evaluate	
1	K6-Create	
Course • U	Understandings of the structure accommodate contractional and	extensional
Objectives d	deformation of the Earth's lithosphere.	
• I	Describe the types of geological structures, how its form, how we	can identify
a	and describe them.	
• T	Γo study the structure of igneous and sedimentary rocks.	
• T	To recognize various geological structures in field.	
• T	To know the preparation of geologic reports.	
UNIT	CONTENT	HOURS
Ι	Scope and aim of structural geology - Methods of	18
repro	esenting physiographic features - contours - Topographic and	
Geo	logic maps, their preparation and uses. Physical properties of	
rock	s: Deformation – brittleness, plastic and elastic properties. Beds	
and	their attitudes - Dip and Strike - trends of outcrop - Rule of	
'V'	of outcrops – Relation between true and apparent dips. Width of	
outc	crops, True Thickness, vertical thickness and their mutual	
relat	tions.	
II	Primary and secondary structures – primary	18
strue	ctures of extrusive and intrusive igneous rocks- primary	
strue	ctures of sedimentary rocks. Plutons - concordant and	
disc		
uise	ordant plutons – dyke, sill, phacolith, lopolith, batholiths,	
	ordant plutons – dyke, sill, phacolith, lopolith, batholiths, g dykes and cone sheets – brief study of salt domes.	

	classification - descriptive study of different types of folds -	
	recognition – of folds in the field and on map. Unconformities –	
	definition – types – significance – recognition in the field on map –	
	over lap and off lap; Inlier and Outlier.	
IV	Faults – definition – terminology – genetic and	18
	geometric classification and description - recognition of faults in	
	the field and on the map – distinction between faults and	
	unconformities – a short account of rift valleys. Joints – definition –	
	geometric and genetic – classification – descriptive study –	
	applications of joints.	
V	Foliation – Primary and secondary foliations; Cleavage	18
	and Schistosity – Types and Origin of Rock Cleavages. Lineation –	
	Kinds and Origin of lineation; Mechanism and Uses of Clinometer	
	Kinds and Origin of lineation; Mechanism and Uses of Clinometer and Brunton compass. Preparation of geological reports.	
VI		-
VI	and Brunton compass. Preparation of geological reports.	-
VI	and Brunton compass. Preparation of geological reports. Width of outcrops, True Thickness, vertical thickness	-
VI	and Brunton compass. Preparation of geological reports. Width of outcrops, True Thickness, vertical thickness and their mutual relations. Joints – definition – geometric and	-
VI	and Brunton compass. Preparation of geological reports. Width of outcrops, True Thickness, vertical thickness and their mutual relations. Joints – definition – geometric and genetic – classification – descriptive study – applications of	-

Text Books:

- 1. M.P.Billings, StructuralGeology:PrenticeHall, EnglewoodClifts, U.S.A, 2017.
- 2. C.M. Novin, Principles of structural Geology John Willey, NewYork, 1953.
- 3. De Sitter, Structural Geology, McGraw Hill, New York, 1956.
- 4. Gokhale, N.W., Theory of Structural Geology. CBS Publishers, 2013.

Reference books:

- 1. E.W.Spencer, AnIntroductiontostructuralGeology:McGraw, Hill, NewYork, 1977.
- 2. Park, P.G., Fundamentals of structural Geology, John Willey & sons, Canada, 1994.

Web resources:

- 1. <u>http://www.uh.edul/jbutler/physical/physical.html.</u>
- 2. <u>www.geologyin.com</u>.
- 3. <u>www.geology.com</u>.

Course Outcomes

On completion of the course students should be able to

CO 1: Understand the concepts of stress and force, normal and shear stresses and hydrostatic stresses.

CO 2: Understand elastic and viscous strain in role behavior, the effects of temperature, pressure and strain rate on rock strength and the mechanism of rockdeformation.

CO 3: Know the classification of fold, joints and fault systems, the terminology used to describe them.

CO 4: Know the types of foliation and lineation, their origin, and their relationship tofolding.

CO 5: Determining the same of fault movement from structures associated withfaults.

CO			PO					PSO		
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	М	S	S	М	S	S	S	М
CO 2	М	S	М	S	S	М	S	S	S	М
CO 3	S	S	S	S	S	М	S	S	S	М
CO 4	S	S	S	S	S	М	S	S	S	М
CO 5	S	S	S	S	S	М	S	М	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-III/ Core Course-III	Physical Geology	Course Code: BGD
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember	
Level	K2-Understanding	
Lever	K3-Apply K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Understanding the physical and chemical properties of the lith	osphere and
Objectives	atmosphere.	
	• To compare and contrast weathering among different rock	types and
	different environments.	
	• To explain the various parts of hydrologic cycle including the i	nteraction of
	surface and groundwater with the solid earth.	
	• To describe and interpret surficial deposits and and forms.	
	• To understand the basic fundamentals oftsunami.	HOUDG
UNIT	CONTENT	HOURS
Ι	Weathering of Rocks – Environment of weathering –	15
	weathering processes, chemical and mechanical weathering -	
	Rates of weathering – kinds and products of weathering, soils –	
	weather & climate - Role of weathering in Geologic cycle,	
	Economic importance of weathering. Atmosphere – Its	
	composition and zones. Movements of atmosphere - wind -	
	Geological actions of wind- sand dunes and their types – loses –	
	arid cycle of erosion – characteristics of deserts.	
II	Running water – source and surface flow – erosion,	15
	transportation and deposition - land reforms resulting from	
	erosion and deposition - valley development - drainage patterns -	
	fluvial cycle (youth maturity and old age) - interruptions to the	
	normal cycle – stream rejuvenation – river capture.	
III	Underground water - sources - water table - zone of	15
	saturation - springs and wells - artesian wells - geysers - spring	

	deposits – aquifer – geological work of ground water – solution –	
	Karst topography – development of Karst features – characteristics	
	of Karst regions – origin of Limestone. Caverns – artesian belts of	
	Tamilnadu.	
IV	Glaciers – origin and types of glaciers – movement of	15
	glaciers – transportation and deposition – glacio fluvial deposits –	
	landforms produced by glaciers – short account of Ice ages. Lakes	
	– classification – types of lakes – lake deposits.	
V	Seas and Oceans – waves tides and currents – sea as a	15
	geological agent – classification of shore line – shore line types –	
	description of continental margin – continental – shelf –	
	continental slope – ocean basin – submarine canyons – sea mount,	
	guyots mid - oceanic ridges - ocean deposits - coral reef: their	
	types and origin; tsunamis – distribution and origin.	
VI	Movements of atmosphere – wind – Geological actions	-
	of wind- sand dunes and their types - loses - arid cycle of	
	erosion – characteristics of deserts – Karst topography –	
	development of Karst features – characteristics of Karst	
	regions - origin of Limestone. Caverns - artesian belts of	
	Tamilnadu.	

Text books:

- 1. Philip G.Worcester : A text book of Geomorphology D. Nostrandcomp Inc. New York.
- Thornbury, W.D., (2004) Principles of Geomorphology. II edition. Wiley Eastern Ltd. New Delhi.

Reference books

- D.Leet& Shelton Judson: Physical Geology prentice Hall, Internation Inc. Englewood, Cliff,U.S.A.
- 2. Arthur Holms : Principles physical Geology Thomos Nelson & sons,London
- William J, Miller: An introduction to physical Geology, D. Van NostrandCompany, Inc New York
- 4. Radhakrishnan.V, 1996: General Geology, VVP, Tuticorin.

Web resources:

http://www.uh.edul/jbutler/physical/physical.html. www.geologyin.com. www.geology.com.

Course Outcomes:

On completion of the course students should be able to

CO 1: Understand the concepts of weathering.

CO 2: Understand the process and features formed due to running water

CO 3: Know the sources of groundwater and its features.

CO 4: Know the weathering process of glaciers and iceage.

CO 5: Determining the ocean features and tsunami.

Mapping of Course outcomes with Programme outcomes/ H	Programmes Specific outcomes
---	------------------------------

СО	РО					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	М	S	S	М	S	S	S	М
CO 2	М	S	М	S	S	М	S	S	S	М
CO 3	S	S	S	S	S	М	S	S	S	М
CO 4	S	S	S	S	S	М	S	S	S	М
CO 5	S	S	S	S	S	М	S	М	S	М

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-III & IV/ Core Practical-II	Palaeontology and Crystallography	Course Code: BGEY
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks – 40	External Marks – 60	Total Marks: 100

Course Objectives:

- To identify the different types offossils.
- To know the evolutionary period offossils.
- To identify some of the morphological characteristics offossils.
- To understand the crystalstructure.
- To learn the twinning of crystals.

PALAEONTOLOGY

Megascopic identification and description of the following fossils:- Corals: Calceola, Zaphrentis, Favosites, Halysites,; Brachiopoda: Spirifer, Productus, Terebratula, Rhynconella, Atrypa, Athyris, Orthis, Echinodermata: Pentrimites, Cidaris, Hemicidaris, Micraster, Holaster, Hemiaster, Stygmatophygus, Mollusca: Pelecypoda: - Arca, Cardium, Meretrix, Cardita, Pecten, Trigonia, Megaladon, Pholodomya, Gryphea, Exogyra, Ostrea, Inoceramus, Alectryonia. Gasteropoda:-Natica, Turbo, Trochus, Turritella, Cerethium, Conus, Voluta, Murex, Fusus, Physa, Bellerophon. Cephalopoda:-Nautilus, Goniatites. Ceratites. Acanthoceras. Scholenbachia, Perisphinctes, Hamites, Scaphites, Baculites, Turrilites and Belemnites, Arthropoda: Trilobita:- Paradoxides, Calymene, Phacops. Trinucleus, Graptolites: -Phyllograptus, Tetragraptus, Didymograptus, Diplograptus, Monograptus, Plant fossils:-Glossopteris, Gangamopteris, Ptillophyllum, Lepidodendron, Sigillaria and Calamites.

MICRO FOSSILS

Lagena, Nodosaria, Textularia, Operculina, Elphidium, Ammonia.

DIAGRAMS

Paradoxides, Pentremites, Trigonia, Arca, Meretrix, Murex, Turritella, Nautilus, Spirifer.

CRYSTAL MODELS

Identification and description of the following crystal models: Galena, Garnet, Fluorite, Pyrite, Tetrahedrite, Boracite, Sphalerite, Cuprite, Zircon, Cassiterite, Rutile, Octahedrite, Apophyllite, Vesuvianite, Scheelite, Meonite, Wulfenite, Chalcopyrite, Beryl, Zincite, Apatite, Calcite, Haematite, Dolomite, Corundum, Tourmaline, Phenacite, Dioptase, Quartz, Olivine, Topaz, Barite, Andalusite, Cordierite, Sulphur, Staurolite, Hypersthene, Calamine, Struvite, Epsomite, Gypsum, Orthoclase, Augite, Hornblende, Epidote, Sphene, Axinite, Albite, Kyanite and Rhodonite

SIMPLE TWIN MODELS

Galena, Fluorite, Pyrite, Rutile, Calcite, Quartz, Staurolite, Gypsum, Augite, Orthoclase, Albite.

Course Outcome:

On completion of the course students should be able to

CO 1: Find, collect, prepares, study and exhibitfossils.

CO 2: Collect and analyze geologic materials infield.

CO 3: Determine the environment of the earth during the geologicpast.

CO 4: Interpret the miller indices of crystals.

CO 5: Recognize crystallographic panes and directions.

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

СО	PO					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	М
CO 2	М	М	М	М	S	S	S	S	Μ	М
CO 3	М	М	S	М	S	S	S	S	Μ	М
CO 4	S	S	S	S	S	S	S	S	S	М
CO 5	S	S	S	М	S	S	S	S	S	М

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III /	Fundamentals of Geology	Course Code: GUE1		
Non Major Elective-I				
Instruction Hours: 2	Credits: 2	Exam Hours: 3		
Internal Marks: 25	External Marks: 75	Total Marks: 100		

Cognitive	K1-Acquire / Remember								
Level	K2-Understanding								
	K3-Apply K4-Analyze								
	K5-Evaluate								
	K6-Create								
Course	• To study the evolution of solar system and age of the Earth.								
Objectives	• To learn about the endogenic process like earthquake, volca	moes and							
	orogenic activity.								
	• Clearly describe plate tectonics in general term.	• Clearly describe plate tectonics in general term.							
	• To compare and contrast weathering among different rock t	types and							
	different environments.								
	• To explain the various parts of hydrologic cycle including the inte	• To explain the various parts of hydrologic cycle including the interaction of							
	surface and groundwater with the solid earth.								
UNIT	CONTENT	HOURS							
Ι	Definition of Geology – Branches of Geology – Geology in the	2							
	service of Man. The Solar system: - The Planets - Meteorites -								
	Asteroids - Satellites - Comets; Evolution of the Solar system -								
	Nebular hypothesis - Planetesimal hypothesis - Structure and								
	composition of Earth's interior.								
II	Earthquakes: Definition - causes and effects - Focus and	2							
	Epicenter - Magnitude and Intensity - Prediction of Earthquakes -								
	Tsunami - Earthquakes in India. Volcanoes: Definition - Types -								
	Causes of volcanism - Effects of Volcanic activity - Prediction of								
	volcanoes.								

III	Mass movements - Definition - Classification - Causes and	2								
	remedial measures. Concept of plate tectonics – Different kinds of									
	plate margins - Evidences in favor and against the concepts of									
	Continental Drift and Plate Tectonics.									
IV	Weathering of Rocks - weathering processes chemical and	2								
	mechanical weathering – Economic importance of weathering.									
	Atmosphere – Its composition and zones. Wind – Geological actions									
	of wind- sand dunes and their types.									
V	Running water – erosion, transportation and deposition – brief	2								
	study of land forms resulting from erosion and deposition.									
	Underground water – sources – water table – zones of groundwater –									
	springs and wells - artesian wells - geysers - aquifer. Glaciers -									
	origin and types of glaciers. Seas and Oceans - waves, tides and									
	currents – sea as a geological agent.									

Text books:

- 1. Arthur Holmes Principles of physical Geology: Thomas Nelson & sonsLondon.
- 2. Radhakrishanan. V. General Geology V.V.P.Press.

Reference books:

- 1. William J. Miller Principles of physical Geology: Thomas Nelson & sons,London.
- 2. W. D. Thornbury A text book of geomorphology: D. Van Nostrand co., London.
- 3. A.L. Bloom General Geology V.V.P.Press.
- 4. L.D. Leet& Judson Physical Geology: Prentice Hall,India.

Web resources:

- 1. <u>www.uj.ac.za/library/bindery</u>
- 2. https:llen.wikisource.org/wiki/portal:geology
- 3. <u>http://www.uh.edul/jbutler/physical/physical.html</u>.

Course Outcomes

On completion of the course students should be able to

CO 1: Gain a better understanding of the Planets, Moons and other objects of our solar system in addition to their distribution and dynamical relationships.

CO 2: Understanding the geological origins of especially important natural hazards including Earthquakes, Tsunami, Volcanic eruptions and Landslides.

CO 3: Understand plate tectonics and its central role as the unifying theory of geology.

CO 4: Understand the concepts of weathering.

CO 5: Know the sources of groundwater and its features.

СО	РО					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	М	S	S	S
CO 2	S	S	S	S	S	S	М	S	S	S
CO 3	S	S	S	S	S	S	М	S	S	S
CO 4	S	S	S	S	S	S	М	S	S	S
CO 5	S	S	S	S	S	S	Μ	S	S	S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

- **S** Strongly Correlated
- **M** Moderately Correlated
- W Weakly Correlated
- **N No Correlation**

Semester-IV / Course Code – IV	Palaeontology and Crystallography	Course Code: BGF
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Understanding the age of the earth through the study offossils.	
Objectives	• To compare the evolution of life through geologic times.	
	• To understand the palaeoclimate and palaeoenvironmentcondition	ns.
	• To describe the morphology of crystals.	
	• To understand the basic fundamentals of different types of crysta	lsystem.
UNIT	CONTENT	HOURS
Ι	Definition of Palaeontology – Definition of fossils – nature and	15
	modes of preservation of fossils: Body fossils and trace fossils;	
	Body fossils - Petrifaction, permineralisation, carbonisation,	
	recrystallisation, silicification; trace fossils - mould, casts, tracks,	
	trails, borings. Uses of fossils in - stratigraphy - palaeoclimate -	
	palaeogeography - palaeolife - evolution and migration of life	
	forms – economic geology. Life through ages. Phylum Arthropoda:-	
	Class – Trilobita – General morphology – classification –	
	geological history and stratigraphic importance. Subphylum	
	Hemichordata – class Graptozoa: order Graptoloidea – general	
	morphology, classification, geological history and stratigraphic	
	importance.	
II	Phylum Coelentrata – class Anthozoa – classification –	15
	tabulate corals - Rugose corals. General morphology geological	

	distribution – stratigraphic importance. Phylum Mollusca: Class	
	Pelecypoda - General characters – dentition, classification and	
	geological history. Class Gasteropoda:- General morphology, shell	
	forms – types of coiling – dextral and sinistral, perforate and	
	imperforate-classification and geological history. Class	
	Cephalopoda:- General morphology, suture line pattern,	
	classification, geological history. Morphology of a Belemnite.	
III	Phylum Brachiopoda:- General morphology – brachial	15
	skeleton, classification, geological history. Phylum Echinodermata:	
	Class Echinoidea: General morphology - regular and irregular	
	echinoids, classification - geologicial history. Class Crinoidea:-	
	General morphology and geological history. Class Blastoidea:	
	General morphology and geological history. Phylum protozoa -	
	Order: Foraminifera: General morphology – dimorphism –	
	classification and stratigraphic importance. A brief account of the	
	following plant fossils:- Glossopteris, Gangamopteris,	
	Ptilophyllum, Calamites, Lepididendron and Sigillaria.	
IV	Definition of crystal – morphological characters of crystal –	15
	faces -forms - edges solid angles - Interfacial angle. Contact	
	Goniometer and its uses. Symmetry elements - crystallographic	
	axes - crystal notation - parameter system of Weiss and Miller	
	indices - axial ratio - laws of crystallography - the law of	
	constancy of symmetry, the law of constancy of interfacial angles	
	and the law of rational indices. Study of the symmetry elements,	
	and forms of the Normal, pyritohedral, tetrahedral and plagiohedral	
	classes of cubic system. Study of symmetry elements and forms of	
	Normal, Hemimorphic, Sphenoidal and Trapezphedral classes of	
	Normal, Hemimorphic, Sphenoidal and Trapezphedral classes of Tetragonal system.	
V		15
V	Tetragonal system.	15
V	Tetragonal system. Study of the symmetry elements and forms of Normal,	15

	classes of Orthorhombic system. Study of the symmetry elements and forms of the Normal classes of the Monoclinic and Triclinic systems. Twin crystals – Definitions – simple and repeated (polysynthetic twins), contact and penetration twins: secondary twins.								
VI	Phylum Arthropoda:- Class – Trilobita – General morphology – classification – geological history and stratigraphic importance. Study of symmetry elements and forms of Normal, Hemimorphic, Sphenoidal and Trapezphedral classes of Tetragonal system.	15							

Text books:

- 1. Dana, F.S.(1955) : A text book of mineralogy Asia Publishing House -Willey.
- 2. Jain, P.C., and Anatharaman, M.S. An Introduction to Palaeontology, Vishal Publications

Reference books:

- 1. Raup, D.M. and Stanely, M.S : Principles of Palaeontology, CBSPublishers.
- 2. Moore, R.C., Laliker, C.G.&Fishcher, A.G: Invertebrate Fossils, Harperbrothers.
- Shrock. R.R and Twenhofel, W.H 1953: Principles of invertebrate Palaeontology, Amold publication.
- 4. Phillips, W.R. Optical Minerlogy, Griffen, D.T. 1986.
- 5. Walhstrom, E.F.1960 Optical crystallography Johnwiley.

Course outcomes:

On completion of the course students should be able to

CO 1: Demonstrate their understanding of how life has evolved through geologictime.

- CO 2: Identify and explain the morphological characters offossils.
- CO 3: Explain the evolutionary trends offossils.
- CO 4: Understand the concepts origin of crystal.
- CO 5: Know the forms and faces of crystals.

СО	PO					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	М	S	S	S
CO 2	S	S	S	S	S	S	М	S	S	S
CO 3	S	S	S	S	S	S	М	S	S	S
CO 4	S	S	S	S	S	S	М	S	S	S
CO 5	S	S	S	S	S	S	Μ	S	S	S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated M – Moderately Correlated W – Weakly Correlated

Semester-IV / SBE - I	Climatology	Course Code: BGS1
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks: 25	External Marks:75	Total Marks: 100

Cognitive	K1-Acquire / Remember						
Level	K2-Understanding						
	K3-Apply K4-Analyze						
	K5-Evaluate						
	K6-Create						
Course	• Understanding the way in which the climate affects our everyday lives.						
Objectives	• To know what the monsoons are and what causes them						
	• To understand the properties of air masses and fronts.						
	• To describe how to ma does arise.						
	• To designate any climate station under Koppen's and Thornthwai	te climatic					
	scheme.						
UNIT	CONTENT	HOURS					
Ι	Nature and scope of climatology: elements of weather and climate	5					
	- composition and structure of the atmosphere - Insulation - heat						
	budget – horizontal – vertical and seasonal distribution of temperature.						
II	Atmospheric pressure: vertical and horizontal distribution of						
	pressure - Wind: planetary, seasonal - monsoon - local winds -						
	Atmospheric circulation – general and tri cellular model.						
III	Humidity – cloud – fog – precipitation: forms and types – 5						
	evaporation - condensation hydrological cycle - air masses: types -						
	fronts: classification and properties.						
IV	Atmospheric disturbances: tropical and temperate cyclones – Anti	5					
	cyclone –thunderstorms – tornadoes.						
V	Climatic classification: Koppen's and Thornthwaite –Atmospheric	5					
	pollution – global warming – sea level rise – ozone depletion.						

Text Books:

- McIlveen J. R., 1986. Basic meteorology a physical outline. Wokingham: Van Nostrand Reinhold.
- Bonan G., 2015. Ecological climatology: concepts applications. Cambridge University Press.

Reference Books:

- 1. D.S. Lal (1998) -Climatology, Chaitanya Publishing House, Allahabad.
- 2. Critchfield. H (1969) General –Climatology, Prentice Hall of India Pvt, Ltd, NewDelhi.
- 3. Keith Smith (1988). Applied Climatology, McGraw Hill, NewYork.
- 4. Das Gupta, A & Kapoor, A.N. (2001) Principles of PhysicalGeography,
- S.C.Chand& Company Ltd. New Delhi.Strahler, A. H. &Strahler, A N. (2001) Modern Physical Geography (4/E), John Wiley and Sons, Inc., NewYork.

Course outcomes:

On completion of the course students should be able to

CO 1: Demonstrate their understanding about Earth's present atmosphere evolved overtime.

- CO 2: Explain the causes of season.
- CO 3: Explain the different clouds and how cloudiness varies from pole topole.
- CO 4: Understand the concepts of majorcyclones.
- CO 5: Recognize how mankind is enhancing Globalwarming.

CO	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	М	М	S	S	S	S	S	М
CO 2	S	S	М	М	S	S	S	S	Μ	М
CO 3	S	S	М	М	S	S	S	S	S	М
CO 4	S	S	М	М	S	S	S	S	S	М
CO 5	S	S	М	S	S	S	S	S	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

 $\mathbf{M}-\mathbf{Moderately}\ \mathbf{Correlated}$

W – Weakly Correlated

Semester-IV /	Introduction to Minerals, Rocks	Course Code: GUE2
Non Major Elective – II	and Fossils	
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• Understanding the physical properties of minerals.	
Objectives	• To describe the origin and uses of minerals.	
	• To study the igneous structures androcks.	
	• To describe the properties of sedimentary and metamorphicrocks.	
	• To understand the palaeoclimate through fossils.	
UNIT	CONTENT	HOURS
Ι	Definitions of Mineral, Mineraloid, Ore and Gangue. Brief study	2
	of Physical Properties of Minerals; Nature, Streak, Cleavage,	
	Hardness, Luster and fracture Description of physical properties and	
	chemical composition (a) Quartz group (Rock crystal, Amethyst,) (b)	
	Feldspars (Orthoclase, Labradorite) (c) Pyroxenes (Hypersthene,	
	Augite) and (d) Amphiboles (Anthophyllite, Hornblende).	
II	Physical properties, Chemical composition, origin and uses of;	2
	Iron ores (Magnetite, Hematite), Placers (Garnet), Copper ores	
	(Chalcopyrite). Calcite, Graphite, Asbestos, Talc, and Bauxite.	
	Introductory knowledge about properties, origin and uses of Lignite of	
	Neyveli.	
III	Brief study of common characters of igneous rocks. Igneous	2
	structures - Dyke, Sill and Batholith. Descriptive study of structure,	
	texture, mineralogy and origin of; 1. Granite 2. Gabbro 3. Basalt 4.	
	Anorthosite.	
IV	Common properties of sedimentary rocks. Simple classification	2
	of sedimentary rocks - Mechanical, Chemical, Organical and	

	Residual. Description of texture, mineralogy and origin of (a)					
	Conglomerate (b) sandstone (c) Shale. General characters of					
	metamorphic rocks. Agents and kinds of metamorphism. Brief study					
	of slate, schist and gneiss.					
	Definition of Palaeontology – definition of fossils – types of	2				
V	preservation of fossils. Uses of fossils. Megascopic identification and					
	description of the following fossils:-Brachiopoda: Productus,					
	Terebratula; Pelecypoda: Arca, Pectan; Gasteropoda: Turbo, Physa;					
	Cephalopoda: Goniatites, Ceratites.					

Text Books:

- 1. Dana, F.S. 1955 A text book of mineralogy Asia publishing House, Wiley.
- 2. Tyrrel, G.W. 1978 The principles of petrology Chapman and Hall Ltd., London.
- 3. Mahapatra, G.B. A text book of Geology, CBS, Delhi

Reference book

- 1. Raup, D.M. and Stanely, M.S. Principles of Palaeontology, CBSPublishers.
- 2. Berry, Mason, Dietrich, 2000 Mineralogy, CBSPublication
- CornelisKlen and Cornelius S. Hurlbut , 1985 Manual of Minerology, John wiley&Sons
- 4. Turner, F, J&Verhogen, J Igneous and Metamorphic Petrology, MC GrawHill

Course Outcomes

On completion of the course, students should be able to

CO 1: Demonstrate the difference between minerals and oreminerals.

- CO 2: Explain the formation of placers and otherminerals.
- CO 3: Explain the origin of igneous rocks and structures.
- CO 4: Understand the origin of sedimentary and metamorphicrocks.
- CO 5: Identify few fossils and explain their morphological characteristics.

CO	РО				PSO					
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	М
CO 2	S	S	S	S	S	S	S	S	S	М
CO 3	S	S	S	S	S	S	S	S	S	М
CO 4	S	S	S	S	S	S	S	S	S	М
CO 5	S	S	S	S	S	S	S	S	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

- **S** Strongly Correlated
- **M** Moderately Correlated
- W Weakly Correlated
- **N No Correlation**

Semester-V / Course Code V	Stratigraphy	Course Code: BGG
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply	
	K4-Analyze	
	K5-Evaluate	
Course	K6-CreateTo learn about the geological time scale, principles of stratigrap	his and the
Objectives	description of strata and their relationship to tectonics, climate, for	Ū.
	with their distribution in different parts of India from Precambrian	n to recent.
	• To study the geological and applications of stratigraphy.	
	• To realize the different geological epochformation.	
	• To collect stratigraphic data in thefield.	
	• To synthesize geological and biological information to interpre	t local and
	regional geologic history.	
TINIT		
UNIT	CONTENT	HOURS
I	CONTENT PRINCIPLES OF STRATIGRAPHY	HOURS 15
	PRINCIPLES OF STRATIGRAPHY	
	PRINCIPLES OF STRATIGRAPHY Law of order of superposition. Law of uniformitarianism and law	
	PRINCIPLES OF STRATIGRAPHY Law of order of superposition. Law of uniformitarianism and law of faunal succession. Correlation: fossiliferous and unfossiliferous	
	PRINCIPLES OF STRATIGRAPHY Law of order of superposition. Law of uniformitarianism and law of faunal succession. Correlation: fossiliferous and unfossiliferous rocks. Standard stratigraphic scale and Indian Geologic Time scale.	
	PRINCIPLES OF STRATIGRAPHY Law of order of superposition. Law of uniformitarianism and law of faunal succession. Correlation: fossiliferous and unfossiliferous rocks. Standard stratigraphic scale and Indian Geologic Time scale. Imperfections in Geological record. Geological divisions.	
	PRINCIPLES OF STRATIGRAPHY Law of order of superposition. Law of uniformitarianism and law of faunal succession. Correlation: fossiliferous and unfossiliferous rocks. Standard stratigraphic scale and Indian Geologic Time scale. Imperfections in Geological record. Geological divisions. Stratigraphic classification and Nomenclature. Stratigraphic Units: Lithostratigraphic unit, Biostratigraphicunit ,Geochronologic Unit.	
	PRINCIPLES OF STRATIGRAPHY Law of order of superposition. Law of uniformitarianism and law of faunal succession. Correlation: fossiliferous and unfossiliferous rocks. Standard stratigraphic scale and Indian Geologic Time scale. Imperfections in Geological record. Geological divisions. Stratigraphic classification and Nomenclature. Stratigraphic Units: Lithostratigraphic unit, Biostratigraphicunit ,Geochronologic Unit. Homotaxis. Physiographic divisions of India: Peninsular India,	
Ι	PRINCIPLES OF STRATIGRAPHY Law of order of superposition. Law of uniformitarianism and law of faunal succession. Correlation: fossiliferous and unfossiliferous rocks. Standard stratigraphic scale and Indian Geologic Time scale. Imperfections in Geological record. Geological divisions. Stratigraphic classification and Nomenclature. Stratigraphic Units: Lithostratigraphic unit, Biostratigraphicunit ,Geochronologic Unit. Homotaxis. Physiographic divisions of India: Peninsular India, Indogangetic alluvial plains, Extra Peninsular India.	15
	PRINCIPLES OF STRATIGRAPHY Law of order of superposition. Law of uniformitarianism and law of faunal succession. Correlation: fossiliferous and unfossiliferous rocks. Standard stratigraphic scale and Indian Geologic Time scale. Imperfections in Geological record. Geological divisions. Stratigraphic classification and Nomenclature. Stratigraphic Units: Lithostratigraphic unit, Biostratigraphicunit ,Geochronologic Unit. Homotaxis. Physiographic divisions of India: Peninsular India, Indogangetic alluvial plains, Extra Peninsular India. PRECAMBRIAN STRATIGRAPHY	
Ι	PRINCIPLES OF STRATIGRAPHY Law of order of superposition. Law of uniformitarianism and law of faunal succession. Correlation: fossiliferous and unfossiliferous rocks. Standard stratigraphic scale and Indian Geologic Time scale. Imperfections in Geological record. Geological divisions. Stratigraphic classification and Nomenclature. Stratigraphic Units: Lithostratigraphic unit, Biostratigraphicunit ,Geochronologic Unit. Homotaxis. Physiographic divisions of India: Peninsular India, Indogangetic alluvial plains, Extra Peninsular India.	15

	Group and Gangpur Group. Archaeans of Tamilnadu, Mineral	
	Wealth of Archaeans of India, The Eparchaean Unconformity,	
	Stratigraphy and Mineral Wealth of Cuddapahs, Stratigraphy and	
	Mineral Wealth of Vindhyans, Kurnool group, Life during	
	Precambrian.	
III	PALEOZOIC STRATIGRAPHY	15
	Distribution of Paleozoic rocks in India, Cambrian of Salt Range,	
	Age of Saline Series, Upper Carboniferous and Permian rocks of	
	Salt Range, Paleozoic rocks of Kashmir Valley, Paleozoic rocks of	
	Spiti Valley, Paleozoic rocks of Peninsular India.	
IV	MESOZOIC STRATIGRAPHY	15
	The Depositional Environment – distribution – life – classification	
	and economic importance of Gondwana formations of India.	
	Coastal Gondwana of India, GOndwana formations of Tamilnadu.	
	Triassic of Spiti – The Lilang System, Jurassic of Kutch,	
	Cretaceous of Tiruchirapalli – Pondicherry – Bagh Beds, Deccan	
	traps: distribution, structure, Lameta beds - infratrapean and	
	intertrapean beds, age of the Deccan traps.	
V	CENOZOIC STRATIGRAPHY	15
	Comprehensive account of the geological events took place during	
	Cenozoic era in India, rise of Himalayas, stratigraphy of Siwalik	
	Super Group, fauna and flora of Siwaliks, Tertiary rocks of Assam,	
	Karewa formation, Tertiary rocks of Tamilnadu, Tertiary rocks of	
	Kerala, Pleistocene Glaciation - Mineral wealth of Tertiary rocks of	
	India.	
VI	Homotaxis. Physiographic divisions of India: Peninsular India,	-
	Indogangetic alluvial plains, Extra Peninsular India – Coastal	
	Gondwana of India, Gondwana formations of Tamilnadu.	
	Conditional of India, Conditional formations of Fullminada.	

- 1. Krishnan M.S. (2003) Geology of India and Burma, 6th Edition, CBS.
- 2. WadiaD.N. (1953) Geology of India, TATA McGraw –Hill.
- Ravindrakumar K.R. Stratigraphy of India. Lemon R.Y (1990) Principles of Stratigraphy, Merrill PublishingCo.

Reference Books:

- Pascoe, E.H. (1968) A manual of the Geology India and Burma, Govt of India Publications.
- 2. Gregory, J.W. and Barret B.H General stratigraphymathuen.

Course Outcome

On completion of the course students should be able to

CO 1: It focus specifically on settings and time periods that the students will encounter on our field trips, emphasizing the combined use of sedimentological characteristics and fossilcontent

CO 2: Student would understand the Indian Stratigraphy and its age related problems.

CO 3: Utilizes both forward reasoning and inverse reasoning to construct one or more hypotheses for the paleogeographic and environmental histories that produced a series of strata.

CO 4: The course then adds larger geological principles to the foundation stratigraphy, effects of sedimentary processes and sedimentation rates on interpretation of evolution in the fossil record.

CO 5: Student would understand world physiographic divisions and rock formation.

CO		PO					PSO			
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	М
CO 2	S	S	S	S	S	S	S	S	S	М
CO 3	S	S	S	S	S	S	S	S	S	М
CO 4	S	S	S	S	S	S	S	S	S	М
CO 5	S	S	S	S	S	S	S	S	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-V / Core Course VI	Mineralogy	Course Code: BGH
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember							
Level	K2-Understanding							
	K3-Apply K4-Analyze							
	K5-Evaluate							
	K6-Create							
Course	• The first unit deals with the introduction to the rock forming n	ninerals and						
Objectives	other concepts related to mineralogy.							
	• The second unit deals with the physical, chemical and optical p	properties of						
	common rock forming minerals.							
	• Recognize that minerals are chemical compounds made up of atoms linked							
	together by a variety of chemical bond types.							
	• Systematic mineralogy of common rock forming minerals.							
UNIT	CONTENT	HOURS						
Ι	DESCRIPTIVE MINERALOGY	15						
	Definition of Mineral and Mineraloid - Scope and aim of							
	Mineralogy. Chemical elements and periodic Table - Bonding of							
	atoms - Metallic, Co-valent, Ionic and Van der Walls Bonding in							
	Minerals, Structure and classification of silicates. Isomorphism,							
	Polymorphism and Pseudomorphism in minerals. Physical							
	properties of minerals depending upon cohesion and elasticity,							
	specific gravity, light, heat, electricity, magnetism and the senses.							
II	Mineralogy, Structure, Chemistry, Optical and Physical	15						
	properties, modes of occurrences and industrial uses of the							
	following groups of minerals: Polymorph and varieties of Quartz							
	- Alkali and Plagioclase group of Feldspars - Nephelineand							
	Sodalite group of Feldspathoides and Zeolites.							
III	Mineralogy, Structure, Chemistry, Optical and	15						

	Physical properties, Modes of occurrences and industrial uses of	
	the following groups of minerals: Pyroxenes, Amphiboles, Micas,	
	Olivine and Garnet.	
IV	OPTICAL MINERALOGY	15
	Nature of light – Ordinary and polarized light – Refraction and	
	reflection. Refractive index, Critical angle and Total internal	
	reflection. Double refraction – Plane polarization by Reflection,	
	Brewster's law – Plane polarization by Refraction, Nicol Prism –	
	Plane polarization by absorption, Polaroid. Petrological	
	microscope and its parts – Optical accessories, their construction	
	and uses – Quartz wedge (Determination of order of Interference	
	Colour) – Gypsum plate and Mica plate (Determination of Fast	
	and Slow vibration directions), and Bereck Compensator	
	(Determination of Birefringence)	
\mathbf{V}	Optical classification of minerals. Optical	15
V	Optical classification of minerals. Optical properties of isotropic and anisotropic minerals observed under	15
V	properties of isotropic and anisotropic minerals observed under	15
V	properties of isotropic and anisotropic minerals observed under parallel and crossed Nicols. Differences between Isotropic and	15
V	properties of isotropic and anisotropic minerals observed under parallel and crossed Nicols. Differences between Isotropic and anisotropic minerals. Definition of extinction, Types of extinction,	15
V	properties of isotropic and anisotropic minerals observed under parallel and crossed Nicols. Differences between Isotropic and	15
V	properties of isotropic and anisotropic minerals observed under parallel and crossed Nicols. Differences between Isotropic and anisotropic minerals. Definition of extinction, Types of extinction, Extinction angles and their determination, and uses – Characters of Uniaxial and biaxial minerals – Optics axis and optic axial	15
V	properties of isotropic and anisotropic minerals observed under parallel and crossed Nicols. Differences between Isotropic and anisotropic minerals. Definition of extinction, Types of extinction, Extinction angles and their determination, and uses – Characters of Uniaxial and biaxial minerals – Optics axis and optic axial angle – Acute and Obtuse Bisectrix – Optic sign of Uniaxial and	15
V	properties of isotropic and anisotropic minerals observed under parallel and crossed Nicols. Differences between Isotropic and anisotropic minerals. Definition of extinction, Types of extinction, Extinction angles and their determination, and uses – Characters of Uniaxial and biaxial minerals – Optics axis and optic axial	15
V	properties of isotropic and anisotropic minerals observed under parallel and crossed Nicols. Differences between Isotropic and anisotropic minerals. Definition of extinction, Types of extinction, Extinction angles and their determination, and uses – Characters of Uniaxial and biaxial minerals – Optics axis and optic axial angle – Acute and Obtuse Bisectrix – Optic sign of Uniaxial and Biaxial minerals – Uniaxial and Biaxial Indicatrix – Sign of	-
	 properties of isotropic and anisotropic minerals observed under parallel and crossed Nicols. Differences between Isotropic and anisotropic minerals. Definition of extinction, Types of extinction, Extinction angles and their determination, and uses – Characters of Uniaxial and biaxial minerals – Optics axis and optic axial angle – Acute and Obtuse Bisectrix – Optic sign of Uniaxial and Biaxial minerals – Uniaxial and Biaxial Indicatrix – Sign of elongation – Optical anomalies. Double refraction – Plane polarization by Reflection, Brewster's 	-
	 properties of isotropic and anisotropic minerals observed under parallel and crossed Nicols. Differences between Isotropic and anisotropic minerals. Definition of extinction, Types of extinction, Extinction angles and their determination, and uses – Characters of Uniaxial and biaxial minerals – Optics axis and optic axial angle – Acute and Obtuse Bisectrix – Optic sign of Uniaxial and Biaxial minerals – Uniaxial and Biaxial Indicatrix – Sign of elongation – Optical anomalies. Double refraction – Plane polarization by Reflection, Brewster's law – Physical properties of minerals depending upon cohesion 	-
	 properties of isotropic and anisotropic minerals observed under parallel and crossed Nicols. Differences between Isotropic and anisotropic minerals. Definition of extinction, Types of extinction, Extinction angles and their determination, and uses – Characters of Uniaxial and biaxial minerals – Optics axis and optic axial angle – Acute and Obtuse Bisectrix – Optic sign of Uniaxial and Biaxial minerals – Uniaxial and Biaxial Indicatrix – Sign of elongation – Optical anomalies. Double refraction – Plane polarization by Reflection, Brewster's 	-

- 1. Dana, F.S. 1955 A text book of mineralogy Asia publishing House, Wiley
- 2. Read, H.H- 1974 Rutley's elements of mineralogy Thomas murby&Co

- 3. Mason., B and Berry, L.G Elements of Mineralogy W.H. Freeman &Co
- 4. Kerr.P.F: OpticalMineralogy

Reference Books:

- 1. Deer. W.A., Howoe. R.A and Zuessman, J. -1966. An introduction of the Rockforming minerals. Longmans.
- 2. Berry, Mason, Dietrich, 2000 Mineralogy, CBSPublication
- CornelisKlen and Cornelius S. Hurlbut , 1985 Manual of Minerology, John wiley&Sons
- 4. Phillips, W.R. Optical Minerlogy, Griffen, D.T. 1986.
- 5. Winchel, A.n. 1968 Elements of optical mineralogy, part 1 & 2 wiley Eastern

Course Outcome

On completion of the course students should be able to

CO 1: Student thoroughly understands the various crystal structures and megascopic and optical characters of various minerals.

CO 2: Understand the basic crystal-chemical properties of minerals and how variability in these properties relates to physical and optical characteristics as well as the formation and stability of minerals in igneous, metamorphic, and sedimentary environments.

CO 3: Recognize and quantify the physical and optical properties of minerals.

CO 4: Microscopic thin section study and identity characterize common rock-forming minerals.

CO 5: Extract information about the conditions of formation and subsequent history of a mineral from its properties and its presence in a rock.

CO	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	М
CO 2	S	S	S	S	S	S	S	S	S	М
CO 3	S	S	S	S	S	S	S	S	S	М
CO 4	S	S	S	S	S	S	S	S	S	М
CO 5	S	S	S	S	S	S	S	S	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-V / Core Practical: CP – III	Mineralogy and Applied Geology	Course Code: BGIY
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks: 40	External Marks: 60	Total Marks: 100

Course Objectives

- To learn the megascopic and Microscopic identification of Quartz, Feldspar, Feldspathoid, Pyroxene, Amphibole groups.
- Describe the characteristics physical properties that we use to identify minerals, including crystal shape, color, luster and hardness.
- To discuss the cite examples of the important properties and characteristics of the silicate nonsilicate rock forming minerals.
- To interpret the hydrogeological data.
- To solve the calculation of ore reserves.

MEGASCOPIC MINERALOGY

Megascopic identification and description of the following: Quartz, Rosy quartz, Amethyst, Chalcedony, Agate, Flint, Jasper, Chert, Opal, Orthoclase, Microcline, Albite, Oligoclase, Labradorite, Nepheline, Leucite, Sodalite, Enstatite, Bronzite, Hypersthene, Diopside, Augite, Spodumene, Acmite, Rhodonite, Wolastonite, Anthopillite, Tremolite, Actinolite, Hornblende, Glaucophane, Olivine, Serpentine, Muscovite, Biotite, Vermiculite, Chlorite, Epidote, Garnet, Olivine, Natrolite, Stilbite, Apophyllite, Talc, Steatite, Andalusite, Kyanite, Sillimanite, Staurolite, Cordierite, Apatite, Beryl, Topaz, Calcite, Dolomite, Tourmaline, Zircon, Fluorite.

MICROSCOPIC MINERALOGY

Microscopic identification and Description of the following:- Quartz, Orthoclase, Microcline, Albite, Oligoclase, Labradorite, Nepheline, Leucite, Enstatite, Hypersthene, Glaucophane, Biotite, Muscovite, Olivine, Epidote, Garnet, Apatite, Zircon, Sphene, Tourmaline, Calcite, Andalusite, Kyanite, Sillimanite, Staurolite, and Cordierite.

APPLIED GEOLOGY

Interpretation of maps – Calculation of ore reserves – Included area method. Simple problems relating to interpretation of hydrogeological data.

BLOW PIPE

Identification of the following mineral powders by simple blow pipe tests:- Apatite, Barite, Calcite, Celestite, Cerusite, chalcopyrite, Galena, Gypsum, Chromite, Haematite, Magnesite, Magnetite, Psilomelane, Pyrolusite, Siderite, Sphalerite, Strontianite, Witherite, Stibnite, Ilmenite andWorlframite

Course Outcomes

On completion of the course students should be able to

CO 1: Students can able to describe several common mineral crystalhabits.

CO 2: Students will be trained in how to investigate the nature of things through observation and using theirsenses.

CO 3: Compare samples of various kinds of rock, and identify similarities and differences

CO 4: Describe some common uses of rocks andminerals

CO 5: Student thoroughly understands the various crystal structures and megascopic and optical characters of various minerals.

CO	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	М	S	S	S
CO 2	S	S	S	S	S	S	М	S	S	S
CO 3	S	S	S	S	S	S	М	S	S	S
CO 4	S	S	S	S	S	S	М	S	S	S
CO 5	S	S	S	S	S	S	М	S	S	S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

- **S** Strongly Correlated
- **M**-Moderately Correlated
- W-Weakly Correlated
- **N No Correlation**

Semester-V / MBE - I	Environmental Geology and	Course Code: BGE3
	Hydrogeology	
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember						
Level	K2-Understanding						
	K3-Apply K4-Analyze						
	K5-Evaluate						
	K6-Create						
Course	• To study the environmental problems andhazards.						
Objectives	• Understanding the Components of the hydrologic cycle						
	• To estimate aquifer properties and welldesign						
	• To study on ground waterexploration.						
	• Derivation ground water chemistry and quality, application of ground						
	waterproblem.						
UNIT	CONTENT	HOURS					
Ι	ENVIRONMENTAL GEOLOGY	15					
	Definition of ecology and environmental Geology.						
	Different ecosystems. Classification of Natural resources. A short						
	account of renewable and nonrenewable resources. Environmental						
	account of renewable and nonrenewable resources. Environmental						
	account of renewable and nonrenewable resources. Environmental problems due to surface geological processes. Causes, hazards and						
	problems due to surface geological processes. Causes, hazards and						
	problems due to surface geological processes. Causes, hazards and remedial measures relating to landslides, floods, and soil erosion,						
II	problems due to surface geological processes. Causes, hazards and remedial measures relating to landslides, floods, and soil erosion, Impact of wind on environment. Degradation of coastal	15					
II	problems due to surface geological processes. Causes, hazards and remedial measures relating to landslides, floods, and soil erosion, Impact of wind on environment. Degradation of coastal environment and measures for coastal protection.	15					
II	problems due to surface geological processes. Causes, hazards and remedial measures relating to landslides, floods, and soil erosion, Impact of wind on environment. Degradation of coastal environment and measures for coastal protection. Influence of deep seated geological processes –	15					
II	problems due to surface geological processes. Causes, hazards and remedial measures relating to landslides, floods, and soil erosion, Impact of wind on environment. Degradation of coastal environment and measures for coastal protection. Influence of deep seated geological processes – Earthquake hazards, Earthquake prediction control and warning;	15					

	environmental modifications. Environmental degradation due to	
	mining and mineral processing Effects of urbanization on	
	surface water, causes for ground water pollution. Population	
	explosion and their pressure on geological environments.	
III	HYDROGEOLOGY	15
	Ground water in Hydrologic cycle – origin of ground water	
	meteroric water, connate water and Juvenile water - vertical	
	distribution of ground water – zone of aeration, zone of saturation	
	and water table. Springs – geological conditions favouring	
	development of springs. Definition of aquifers, aquitards and	
	aquicludes. Geologic formations as Aquifers. Types of Aquifers –	
	unconfined, confined and perched aquifers – artesian wells,	
	peizometric surface.	
IV	Rocks properties affecting ground water, openings in rocks. Types	15
	of openings - primary openings - secondary openings. Porosity,	
	specific yield, specific retention and permeability. Ground water	
	movement - forces causing ground water movement: seepage,	
	capillary movement, laminar flow, turbulent flow, Darcy's law co-	
	efficient of permeability and field measurement of permeability.	
	Fluctuations in ground water levels – causes of fluctuations.	
V	Ground water quality – physical, Bacterial, and	15
	chemical qualities - drinking water standards - major ions	
	affecting chemical quality of ground water. Ground water	
	recharge – natural and artificial recharge. Ground water	
	exploration - surface methods - electrical resistivity method.	
	Water wells – types of wells – well construction and development	
	- collector wells and infiltration galleries. Ground water	
	inTamilnadu.	

- 1. Tolman., G.F. 1937 Ground water McGraw Hill. NewYork.
- 2. Todd, D.K. 1959 Ground water Hydrology. John wiley&Sons.
- 3. Davis, S.N. & Deweist. 1966 Hydrogeology, John Wiley & Sons.

- 4. Regunath, H.M. 1983 Ground water, WileyEastern.
- Valdiya, K.S (1987). Environmental Geology Indian Context. Tata McGraw-Hill.,New Delhi
- 6. Kellar, E.A. 1979 Environmental Geology, Charless. Merrill publishing Co.ohio.
- 7. Lundgren, l. 1986 Environmental Geology, PrenticeHall.

Reference Books

- 1. Walton, W.C. 1970 Ground water Resources evaluation, McGrawHill.
- Karanath, K.R. 1987 Ground water Assessment Development & management TataMcGraw Hill.
- Howard, A.D. &Ramson. I.1978, Geology in environmental planning. McGraw Hill,New Delhi

Course Outcomes

On completion of the course students should be able to

CO 1:Student would understand the hydrodynamics, quality of groundwater, groundwater

exploration and groundwaterconservation

CO 2:Understand the components of hydrologic cycle.

CO 3: Understand measurement of ground water explorationtechniques

- CO 4: Understand the various artificial rechargetechniques
- CO 5: Understand the quality of groundwater.

CO	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	М	М	S	S	S	S	S	М
CO 2	М	S	М	М	S	S	S	S	S	М
CO 3	М	S	М	М	S	S	S	S	S	М
CO 4	М	S	М	М	S	S	S	S	S	М
CO 5	М	S	М	М	S	S	S	S	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-V / MBE - II	Remote sensing and Mining	Course Code: BGE4
	Geology	
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember							
Level	K2-Understanding							
	K3-Apply K4-Analyze							
	K5-Evaluate							
	K6-Create							
Course	• The paper deals about the basics of remote sensing a	nd image						
Objectives	processing.							
	• Attain a foundational knowledge and comprehension of the	physical,						
	computational and perceptual basis for remote sensing.							
	• Gain familiarity with a variety of earth science applications	of remote						
	sensing.							
	• To study the sensor characteristics, satellite orbits and vario	us current						
	and future missions involving a range of sensors across the vis	ible, radar						
	and microwave components of the spectrum.							
	• To study the surface and underground mining methods.							
	CONTENT	HOUDS						
UNIT	CONTENT	HOURS						
I	INTRODUCTION TO REMOTE SENSING	15						
	Definition of Remote sensing – processes and elements							
	involved in electromagnetic remote sensing of earth resources -							
	Electromagnetic spectrum and its components - Atmospheric							
	windows – Energy interaction in the atmosphere – Energy							
	interactions with earth surface features - Spectral reflectance curves							
	of water, vegetation and soil – Data acquisition and interpretation.							
	An outline of remote sensing applications.							
II	PHOTOGEOLOGY	15						
	Types of aerial photographs – Scale in aerial							

	photographs and causes for its variation – Flight planning procedures	
	- Mosaic and its types - Stereoscopy and stereoscopes - Outline of	
	vertical exaggeration and parallax – Principles of photo	
	interpretation – Annotation of aerial photographs.	
III	SATELLITE REMOTE SENSING	15
	Types of satellites – Scanning systems and detectors	
	- Sensor resolutions:- spatial, spectral, radiometric and temporal;	
	Sensor characteristics of Landsat, Spot and IRS and high resolution	
	satellites; Satellite image interpretation: visual and digital	
	interpretation techniques and an outline of digital image processing	
	techniques.	
IV	Role of geology in mining industries – definition of	15
	mining terms, shaft, Hanging wall, Adit, roof, Drive crosscut,	
	Tunnel, Raise, Winze, Stope – Types; Surface methods of mining,	
	Alluvial mining – pan &betea, sluicing, Hydraulicking, Dredging.	
	Opencast mining. Benches, Explosives, working slope, mining	
	equipments – Dragline, power showels.	
V	SUBSURFACE MINING (UNDERGROUND MINING)	15
	Advantages and limitations. Stoping – open stopes,	
	supported stopes, pillar supported stopes – square supported stoping	
	- timber supported stopes- filled stopes - shrinkage stopes - shaft	
	sinking. Caving; Top slicing. Sublevel caving and Block caving.	
	Coal mining (surface mining) Strip mining and Augering.	
	Underground mining. Room and pillar method – Longwall method –	
	hydraulicking. Mineral Economics and its concept. Role of Minerals	
	in National Economy. Problems peculiar to Mineral Industruy,	
	strategic, critical and Essential Minerals. Mineral conservation and	
	substitution.	
L	I	

- Lillesand, T.M and R.W. Kiefer (2000). Remote sensing and image interpretation. John Wiley & Sons, NewYork
- 2. Sabins, F.F (1987). Remote sensing principles and interpretation. Freeman Publishers

New York

- 3. Miller, V.C (1961). Photogeology. McGraw-Hill Publishers, NewYork
- 4. Allum, J.A.E (1978). Photogeology and regional mapping, Pergamon Press Ltd., Oxford
- Siegal, B.S and R. Gillespie (1980). Remote sensing in Geology, John Wiley & Sons, New York
- Pandey, S.N (1987). Principles and applications of photogeology. Wiley Eastern Ltd.,New Delhi
- 7. Burrough, P.A.(1986)- Principles of Geographical information system for land resource assessment.
- 8. Arogyaswamy, R.N.P. Courses in Mining Geology Oxford &IBH, NewDelhi.
- 9. Thamus, P.J. 1979 Anintroduction to mining, Methun.
- 10. McKinstry, H.E 1960 Mining Geology, New49rec.

Reference Books:

- Anji Reddy, M (2001). Textbook of remote sensing and GIS, BSP PS Publications, New Delhi
- Rampal, K.K (1999). Handbook of aerial photography and interpretation. ConceptPublishers Company, NewDelhi
- Narayan, L.R.A (1999). Remote sensing and its application. Universities PressLtd., Hyderabad.

Course Outcomes

On completion of the course students should be able to

CO 1: Students will be able to recognize and explain at basic level fundamental physical principles of remote sensing, including the electromagnetic spectrum; the emission, scattering, reflection, and absorption of electromagnetic (EMR)radiation.

CO 2: Student would understand the remote sensing, image processing and application of Geographic Informationsystem.

CO 3: Students will be able to recognize and explain basic computational properties of remote sensing data acquisition, storage, and imageprocessing.

CO 4: Students will be able to discuss the surface and subsurface mining methods.

CO 5: Students will be able to analysis satellite images of mining by creating the topography and geological map.

СО	РО					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	S	М	S	S	М	S	S	М
CO 2	М	S	S	М	S	S	М	S	S	М
CO 3	М	S	S	М	S	S	М	S	S	М
CO 4	М	S	S	М	S	S	М	S	S	М
CO 5	М	S	S	М	S	S	Μ	S	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-V / Skill	Water Quality Analysis	Course Code: BGS2
Based Elective - II		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember	
Level	K2-Understanding	
	K3-Apply K4-Analyze	
	K5-Evaluate	
	K6-Create	
Course	• To study the physical properties of minerals.	
Objectives	• To study the pH and theirmeasurements.	
	• To make the students understand the waterpollution.	
	• To understand the Reverse Osmasissystem.	
	• To gain knowledge on water bornediseases.	
UNIT	CONTENT	HOURS
Ι	PHYSICAL PROPERTIES OF WATER	2
	Colour, odour, taste, temperature, turbidity and viscosity. Methods	
	of analysis of physical properties. World Health Organization	
	(WHO) and Bureau of Indian Standards (BSI).	
II	CHEMICAL PROPERTIES OF WATER	2
	pH-alkalinity, acidity and their measurements, ionization potential,	
	gas solubility, precipitation and dissolution of ions, equivalent	
	weight and its measurements, colloids and cogulation, insoluble	
	components and their measurements.	
III	LABORATORY METHODS OF ANALYSIS	2
	Standard solutions-determination of Ph-Hardness – Dissolved	
	oxygen - BOD - COD, TDS - TSS. Determination of F, Cl, N, P,	
	K, Na, Ca, Mg, Fe, CaCo ₃ , HCO ₃ & Trace Metals.	
IV	Utility of standards required for potable, Agricultural	2

	and Industrial purposes. Tools used for assessing the quality of	
	water.	
V	WATER POLLUTION	2
	Urban, Industrial pollution and remedial measures. Arsenic and	
	Fluoride content in water. Recycling of water, water borne diseases,	
	Reverse Osmasis (RO) system and Desalination of water.	

Reference Books:

- 1. Davis, N.S., De Weist, R.J.M. (1996). Hydrogeology, John Wiley, NewYork.
- 2. Todd, D.K., (2002). Ground Water 3rd edition, JohnWiley, Singapore.
- 3. Freeze, R.A., Cherry, J.A. (1979). Ground water, Prentice Hall, NewJersey.
- Sawyer, C.N., Mc Carty, P.L., (1878). Chemistry for Sanitary Engineers,3rd edition, McGraw Hill, New York.
- APHA (1980). Standard Methods for the Examination of Water and Waste Water, 15thedition, American Water Association and Pollution Control Federation, NewYork.

Course Outcomes

On completion of the course students should be able to

CO 1: Students able to discuss the water qualityparameters.

CO 2: Understand the laboratorytechniques.

CO 3: To discuss the water related diseases and remedialmeasures.

CO 4: Describe the Fluoride and Arsenic ingroundwater.

CO 5: Students able to discuss the various drinking waterstandards.

со			PO					PSO		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	М	М	S	S	S	S	S	М
CO 2	S	S	М	М	S	S	S	S	S	М
CO 3	S	S	М	М	S	S	S	S	S	М
CO 4	S	S	М	М	S	S	S	S	S	М
CO 5	S	S	М	М	S	S	S	S	S	М

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-V / Skill	Geostatistics and Computer	Course Code: BGS3
Based Elective – III	Application	
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember					
Level	K2-Understanding					
	K3-Apply K4-Analyze					
	K5-Evaluate					
	K6-Create					
Course	• Understanding the mathematical and statistical principles of	numerical				
Objectives	data. Ta data maina ada da a da a malatina and manazira incincifia					
	 To determine whether the correlation and regression is significated. To learn and practice basic keyboarding and mouse use a 					
	engines and locate www addresses.	no scarell				
	• To demonstrate an understanding of computer programming	language				
	concepts.					
	• To gain a basic, practical understanding of GIS and GPS	concepts,				
UNIT	techniques and real world applications. CONTENT HOURS					
I	Numerical data in 54reccias54es. Frequency distribution: Mean	2				
1		4				
	median, mode, dispersion. Measures of Dispersion Skewness and					
	Kurtosis, Addition, Multiplation and Division.					
II	Kurtosis, Addition, Multiplation and Division. Sampling and sampling plan in Geoscience: Sample Random	2				
II	Kurtosis, Addition, Multiplation and Division. Sampling and sampling plan in Geoscience: Sample Random Sampling Systamatic and stratified and Cluster sampling: Standard	2				
	Kurtosis, Addition, Multiplation and Division. Sampling and sampling plan in Geoscience: Sample Random Sampling Systamatic and stratified and Cluster sampling: Standard errors.Correlation and Regression Analysis in Geoscience.	2				
II	Kurtosis, Addition, Multiplation and Division. Sampling and sampling plan in Geoscience: Sample Random Sampling Systamatic and stratified and Cluster sampling: Standard	2				
	Kurtosis, Addition, Multiplation and Division. Sampling and sampling plan in Geoscience: Sample Random Sampling Systamatic and stratified and Cluster sampling: Standard errors.Correlation and Regression Analysis in Geoscience.					
	Kurtosis, Addition, Multiplation and Division. Sampling and sampling plan in Geoscience: Sample Random Sampling Systamatic and stratified and Cluster sampling: Standard errors.Correlation and Regression Analysis in Geoscience. Introduction to Computer-Elements of computer: Hardware and					
	Kurtosis, Addition, Multiplation and Division. Sampling and sampling plan in Geoscience: Sample Random Sampling Systamatic and stratified and Cluster sampling: Standard errors.Correlation and Regression Analysis in Geoscience. Introduction to Computer-Elements of computer: Hardware and Software. Input devices- keyboard,mouse.Output devices-					
	Kurtosis, Addition, Multiplation and Division. Sampling and sampling plan in Geoscience: Sample Random Sampling Systamatic and stratified and Cluster sampling: Standard errors.Correlation and Regression Analysis in Geoscience. Introduction to Computer-Elements of computer: Hardware and Software. Input devices- keyboard,mouse.Output devices- Monitor,Printer.Memory:primary-RA,RAM. Secondary Memory-					
III	Kurtosis, Addition, Multiplation and Division. Sampling and sampling plan in Geoscience: Sample Random Sampling Systamatic and stratified and Cluster sampling: Standard errors.Correlation and Regression Analysis in Geoscience. Introduction to Computer-Elements of computer: Hardware and Software. Input devices- keyboard,mouse.Output devices- Monitor,Printer.Memory:primary-RA,RAM. Secondary Memory- Hard Disk,Floppy & CD.	2				
III	Kurtosis, Addition, Multiplation and Division. Sampling and sampling plan in Geoscience: Sample Random Sampling Systamatic and stratified and Cluster sampling: Standard errors.Correlation and Regression Analysis in Geoscience. Introduction to Computer-Elements of computer: Hardware and Software. Input devices- keyboard,mouse.Output devices- Monitor,Printer.Memory:primary-RA,RAM. Secondary Memory- Hard Disk,Floppy & CD. A short account on: Algorithm-Flow charts, Programming	2				

V	Basic principles of GIS. Elements, concepts and Usefulness of GIS,	2
	components of GIS. Data source, spatial data, Raster and vector	
	data- Data analysis and application.Global Positioning System.	

- 1. Balagurusamy, Introduction toComputers.
- 2. Saroj.K.Pal (1985). Statistics for Geoscientists: Techniques and applications, concept publishing CO., NewDelhi.
- 3. C.Davis,(1975), Statistics and analysis in Geology, Jhonwiley&sons.
- 4. Gupta G.V., (1995). Basic Statistics, Chand.5.
- 5. Ravichandran, D., (2001). Introduction communication, Tata McGraw Hill PublicationLtd.,

Reference Books:

- D.F .Merriam (1989). Edited Stastical Analysis: A computer Oriented Aproach, Computer Application in the Earth Sciences, A.A.Affi.an international Symposium Pienum Press, New York.
- Robert L.Miller (1982). Statistical analysis in the Geological Sciences, John Wiley and Sons, New York.
- 3. Palk.S.K (1998). Statistics for Geoscientists: Techniques and applications.
- 4. Gregory, S (1963). Statiscal Methods and the Geographer Long man & Lodon.

Course Outcomes

On completion of the course students should be able to

CO 1:Perform proper and efficient sample statistical assessment and to statistically characterize spatially referenceddata.

CO 2: Apply effective quantitative analysis of spatial and spatio-temporaldata.

CO 3:Demonstrate a basic understanding of computer hardware and software.

CO 4:Implement the algorithms and draw flowcharts for solving mathematicalproblems.

CO 5:Create maps, images to communicate spatial data in a meaningful way toothers.

СО			PO					PSO		
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	Μ	S	М	М	S	S	S	S	S	S
CO 2	Μ	S	М	М	S	S	S	S	S	S
CO 3	Μ	S	М	М	S	S	S	S	S	S
CO 4	Μ	S	М	М	S	S	S	S	S	S
CO 5	М	S	М	Μ	S	S	S	S	S	S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-VI / Course Code – VII	Igneous Petrology	Course Code: BGI
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember								
Level	K2-Understanding								
	K3-Apply K4-Analyze								
	K5-Evaluate								
	K6-Create								
Course	• To give a basic understanding of the mechanisms which control								
Objectives	the diversity of igneous rocks								
	• To emphasis the relationship between tectonic setting and igneous rocksuites								
	• To study the intrusive and extrusive igneousrocks								
	• To study the various classification								
	• To study the magmatic differentiation.								
UNIT	CONTENT	HOURS							
Ι	Definition of Petrology – Earth zones. Composition and	18							
	constitution of magmas - Primary and Parental Magmas. Forms of								
	Intrusive igneous rocks. Concordant forms – Sill, Laccolith, Lopolith								
	and Phacolith, Discordant forms - Dykes, Cone Sheets, Volcanic								
	neck, Ring dyke, Batholiths, Stocks, Bosses and Psymaliths. Forms								
	of Extrusive igneous rocks: Lava flows, Pyroclastic deposits -								
	Agglomerate, Lapilli, volcanic ash and volcanic froth.								
II	Structures vesicular and Amygdaloidal structures – block	18							
	lava – Ropy lava – pillow structure – flow structure – sheet joints-								
	mural jointing – columnar jointing – rift and grain. Textures:								
	Definition and description – crystallinity: crystallites and microlites–								
	Devitrification – Granularity – shapes of crystals, mutual relations –								
	Equigranular textures: allotriomorphichypidimorphic,								
	Panidiomorphic. Inequigranular Textures: porphyritic and								
	Intergrowth texture – Trachytic texture – Intergrowth texture structures								

	orbicular structure Spherulitic structure – Perlitic fracture. Directive	
	textures, Overgrowth textures, Reaction textures – MicroStructures	
III	Classification: bases of classification – megascopic	18
	classification - classification based on colour index - based on the	
	proportion of Alkali to plagioclase feldspars. Based on silica	
	saturation – based on alumina saturation – A short account of CIPW	
	classification, Normative minerals, salic and femicgroups - mention	
	of the main divisions, classes, orders, suborders, rangs and subrangs	
	only. Merits and defects of CIPW classification - Tyrrels	
	tabularclassification.	
IV	Texture, Mineralogy, Classification, and Modes of	18
	occurrence of: Granite, Granodiorite, Syenite, Diorite, Gabbro, their	
	hypabyssal and volcanic equivalents. Petrographic characters,	
	distribution in India and origin of Pegmatites, Lamprophyres,	
	Alkaline rocks, Dunite, Peridotite and Anorthosites.	
V	Crystallization of Unicomponent magma –	18
	Crystallizations and petrogenetic significance of Binary magmas:	
	Diopside - Anorthite, Eutectic system, Albite - Anorthitesoild -	
	solution system, Forestrite - Silica incongruent melting system and	
	Ternary system (Ab - An - Di). Reaction principle and Bowen's	
	reaction series - Causes for the diversity of Igneous rocks -	
	Magmatic Differentitation: Fractional crystallization, liquid	
	immiscibility, Assimilation – short notes on: Consanguinity,	
	Variation diagrams and petrographic provinces.	
VI	Merits and defects of CIPW classification - Tyrrels tabular	-
	classification - Structures vesicular and Amygdaloidal structures -	
	block lava - Ropy lava - pillow structure - Forms of Extrusive	
	igneous rocks: Lava flows, Pyroclastic deposits	

- 1. Tyrrel, G.W. 1978 The principles of petrology Chapman and Hall Ltd., London.
- 2. Bowen, N.L. The Evolution of the Igneous Rocks Dover publication, Inc, NewYork.
- 3. Barth, FW. 1962 Theoritical petrology –Wiley.
- 4. Walstrom, E.E. 1961 Theoritical Igneous petrology, Wiley.
- 5. Turner.F.J and Verhoogen.J –1960.- Igneous and Metamorphic petrology McGrawHill.
- Hatch, F.H. Wells, A.K. Petrology of Igneous Rocks, Thomas Murby& Wells, M.K. 1949
- Johannesen, A 1962 Descriptive petrography of Igneous Rocks, Vols. I to IV –Allied Pacific.

Course Outcomes

On completion of the course students should be able to

CO 1: Student would understand the paragenesis of minerals of the Igneousrocks.

CO 2: This course presents a broad review of igneous rocks, emphasizing their tectonic associations, interrelationships and petrogenesis.

CO 3: After successful completion of this course you will have an integrated understanding of the range, composition and petrogenesis of the major igneous rock groups and will be able to identify them in thin section and deduce their tectonic association and mode of origin.

CO 4: Students will become familiar with the key skills used to aid the interpretation of igneous rocks.

CO5: Students will become major igneous rock groups and will be able to identify megascopic and microscopic studies.

СО	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	S	S	S	S	S	S	S
CO 3	S	S	S	S	S	S	S	S	S	S
CO 4	S	S	S	S	S	S	S	S	S	S
CO 5	S	S	S	S	S	S	S	S	S	S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-VI /	Sedimentary Petrology and Metamorphic	Course Code: BGJ
Course Code – VIII	Petrology	
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember								
Level	K2-Understanding								
	K3-Apply K4-Analyze								
	K5-Evaluate								
	K6-Create								
Course	• Knowing the basic concepts in the classification of sedimentaryro	cks.							
Objectives	• Knowing the processes that erode, transport, and depositsediments.								
	• Observing physical characteristics of sedimentary rocks,								
	especially mineral composition and texture.								
	• To become familiar with the petrographic nomenclature of								
	sedimentaryrocks.								
	• To learn about the occurrence, origin, classification and environments of								
	sedimentaryrocks.								
UNIT	CONTENT	HOURS							
Ι	Sedimentary process – disintegration & decomposition of	18							
	rocks - transportation - deposition - diagenesis. A broad classification								
	of sedimentary rocks into residual mechanical, chemical and organic								
	Groups. Structures of sedimentary rocks. Mechanical, chemical and								
	organic structures. Textures of sedimentary rocks - clastic and non -								
	clastic textures.								
II	Residual deposits – terra rossa, clay, laterite and bauxite and	18							
	soils. Mechanical deposits - rudaceous, arenaceous and argillaceous								

	groups. Heavy minerals in sand and sandstones. A descriptive study of	
	Conglomerate, Breccia, Sandstones and Shales.	
III	Chemical deposits – siliceous, carbonaceous, ferruginous and	18
	salt deposits. Organic deposits - calcareous, siliceous, phosphatic,	
	ferruginous and carbonaceous deposts. A breief study of Flinit, Chert,	
	Siderite, Gypsum, Rock Salt, Caliche. Guano and Kiesellgher.	
	Descriptive study of different types of calcareous and	
	carbonaceousdeposits.	
IV	Definition of metamorphism – Agents and kinds of	18
	metamorphism – facies, zones and grades of metamorphism –	
	metamorphic structures and textures. Cataclastic metamorphism and its	
	products. Retrograde metamorphism. Thermal metamorphism of	
	62reccia sediments, pure and impure calcareous rocks. A brief study of	
	Breccia, Flaser, Mylonite, Hornfels, Marble, Ophicalcite.	
V	Dynamorthermal metamorphism of 62reccia sediments. Plutonic	18
	metamorphism petrography and origin of charnockites – metamorphic	
	differentiation – pnumatolitic and injection metamorphism – anataxis	
	and palingenesis. Brief study of Slate, Phyllite, Quartzite, Schist.	
	Gneiss, Granulite, Leptynite, Charnockite, Ecologite, Amphibolite,	
	Schorl, Adinole, Lit- Par – Lite – gneiss and Migmatite.	
VI	Cataclastic metamorphism and its products – Descriptive study of	18
	different types of calcareous and carbonaceousdeposits - Mechanical	
	deposits - rudaceous, arenaceous and argillaceous groups.	

- 1. Tyrrel, G.W Principles of petrology, Asia PublishingHouse.
- 2. Huang, W.T. –Petrology, MC GrawHill
- 3. Pettijhon, F.J. –Sedimentary Rocks, Harper &Bros.
- 4. Harker, A. -Petrology for Students, Cambridge,

Reference Books

- 1. Turner, F, J&Verhogen, J–Igneous and Metamorphic Petrology, MC GrawHill.
- 2. Williams, H, Turner, F.j. & Gillibert, C.M. Petrography, Freeman.
- 3. Winkler, A. G.F. Petrogenesis of Metamorphic Rocks, McGrawHill.

Course Outcomes

On completion of the course students should be able to

CO 1: Student would understand the weathering, provenance, depositional environments, climate and tectonics of the sedimentaryrocks.

CO 2: Demonstrate proficiency in common practical skills in SedimentaryGeology.

CO 3: Interpret the processes responsible for the deposition of the sediment from the nature of the sediment and sedimentary structures present within the sedimentaryrock.

CO 4: Understand the depositional environment of a sedimentary rock package based on recognition of faciesassociations.

CO5: Student would understand the petrological studies in megascopic and microscopic

CO	РО					PSO				
CO	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	S	S	S	S
CO 2	S	S	S	S	S	S	S	S	S	S
CO 3	S	S	S	S	S	S	S	S	S	S
CO 4	S	S	S	S	S	S	S	S	S	S
CO 5	S	S	S	S	S	S	S	S	S	S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

- **S** Strongly Correlated
- **M** Moderately Correlated
- W Weakly Correlated
- N No Correlation

Semester-VI /	Economic Geology	Course Code: BGK
Core Course – IX		
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember									
Level	K2-Understanding									
	K3-Apply K4-Analyze									
	K5-Evaluate									
	K6-Create									
	• To study the basic terminology and classification of ore local	ization.								
Course	• To study the magmatic processes.									
Objectives	• Geochemical properties of earth's crust, mantle and co	re and the								
	fundamentals of geochemical measurements for the exploration and									
	energy resources.									
	• To study the physical properties of ore minerals.									
	• To study the occurrence and distribution of ore minerals.									
UNIT	CONTENT	HOURS								
Ι	Historical development of economic Geology.	18								
	Materials of mineral deposits - ore minerals, gangue minerals,									
	tenor and grade or ores. Classification of mineral deposits. Outline									
	of Lindgren's and Bateman's classification. Controls of ore									
	of Lindgren's and Bateman's classification. Controls of ore									
	of Lindgren's and Bateman's classification. Controls of ore localization – structural controls, stratigraphic physical and									
	-									
	localization – structural controls, stratigraphic physical and									
II	localization – structural controls, stratigraphic physical and chemical – brief study of metallogenetic epochs and provinces –	18								
II	localization – structural controls, stratigraphic physical and chemical – brief study of metallogenetic epochs and provinces – geologicthermometers.	18								
II	localization – structural controls, stratigraphic physical and chemical – brief study of metallogenetic epochs and provinces – geologicthermometers. Magmatic processes. – Mode of formation – Early	18								
II	localization – structural controls, stratigraphic physical and chemical – brief study of metallogenetic epochs and provinces – geologicthermometers. Magmatic processes. – Mode of formation – Early magmatic processes and deposits, disseminations. Segregations	18								
II	localization – structural controls, stratigraphic physical and chemical – brief study of metallogenetic epochs and provinces – geologicthermometers. Magmatic processes. – Mode of formation – Early magmatic processes and deposits, disseminations. Segregations and injections – Late magmatic processes and deposits – Residual	18								

	processes – principles – Factors affecting deposition – wall rock alteration – minerals sequence – cavity filling deposits Fissure veins, shear – zone, stock- work, saddle reef, ladder vein, fold cracks, 65reccias filling, solution cavities, pore space and vesicular filling – replacement deposits, the process and deposits – criteria	
	of replacement.	
III	Sedimentary processes and cycles – principles involved in sedimentation – cycles of Iron and manganese, weathering processes – principles- Residual concentration process and deposits – mechanical concentration principles – evluvial, alluvial, beach and eolian placers – paystreak and bonanza. Oxidation and supergene sulphide enrichment – solution and deposition in the zone of oxidation – secondary sulphide enrichments – Gossans and capping. Metamorphic processes – Formation of Graphite, Asbestos, Talc, Soapstone and Sillimanite group ofminerals.	18
IV	Diagnostic physical properties, chemical composition, uses, modes of occurrence and distribution in India of the following economic minerals. Graphite, Realgar, Orpiment, Stibinite, Molybdenite, Cinnabar, Anglesite, Barite, Gypsum, Celestite, Corundum, Ochre, Ilmenite, Chromite, Franklinite, Cassiterrite, Magnesite, Cerussite, Halite, Fluorite, Phosphatic Nodule, Monazite, Wollastonite, Colembite, Tantalite, Samarskite, Asbestos, Steatite and Vermiculite. Mineralogy, mode of occurrence, uses and distribution in India of the following precious metals and minerals. Gold deposits – Gem stones. Character, distribution and mode of occurrence of structural and building materials.	18
V	Mineralogy, mode of occurrences, uses and distribution in India of the following metalliferous deposits – Iron, Manganese, aluminium, copper, lead, Zinc – chromium. Fossils fuels – coal – uses, classification, constitution, origin and	18

	distribution in India. Petroleum- composition, uses, theories of	
	origin, oil traps, and important oil fields of India.	
VI	Classification of minerals deposits - Hydrothermal processes	-
	Metamorphic processes – Formation of Graphite – Gold deposits –	
	Gem stones. Character, distribution and mode of occurrence of	
	structural and building materials – Petroleum – composition, uses,	
	theories of origin, oil traps, and important oil fields of India.	
1		

- Bateman Allan .M. –Economic Mineral Deposits, Asian Publishing House, 2nd Edition1962.
- 2. Lindgren W. Mineral Deposits, MCGrawHill, 1933.

Reference Books:

- 1. Coggin, B. and Dey, A.K. India's Mineral Wealth, Oup1955.
- 2. Park, C.F. and Macdiarmid, R.A- Ore deposits, Freeman, 1970
- 3. Krishnaswamy, S. India's Mineral Resources, oxford and IBH.
- 4. Deb.S. Industrial Minerals and Rocis of India, Allied, 1980.
- 5. Gokhale, K.V.G.K. and Rao , T.C- Ore deposits of India, their distribution and processing, Thosmson press, 1978.

Course Outcomes

On completion of the course students should be able to

CO 1: An understanding of the socio-economic drivers for mining and explorationactivities.

CO 2: Detailed knowledge and the ability to interpret the strength, of the various genetic models associated with each class of mineralization; with emphasis on the mineralogy, geology and geochemical controls on mineralization of oredeposits.

CO 3: An understanding of the roles of a geologist in the mining and explorationindustries.

CO 4: Students able to understand the ore minerals in thefield.

CO5: An understanding of the megascopic and microscopic identified minerals.

СО	РО					PSO				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	S	S	S	S	S	S	S	S
CO 2	М	S	S	S	S	S	S	S	S	S
CO 3	М	S	S	S	S	S	S	S	S	S
CO 4	М	S	S	S	S	S	S	S	S	S
CO 5	Μ	S	S	S	S	S	S	S	S	S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

Semester-VI /	Petrology and Economic Geology	Course Code: BGY		
Core Practical – IV				
Instruction Hours: 6	Credits: 5	Exam Hours: 3		
Internal Marks: 40	External Marks: 60	Total Marks: 100		

Course Objectives:

- To study the megascopic identification of igneous, sedimentary and metamorphic rocks.
- To study the microscopic identification of igneous, sedimentary and metamorphicrocks.
- To study the megascopic identification of oreminerals.
- To study the occurrence and distribution of rocks and oreminerals.
- To study the industrial minerals.

PETROLOGY: MEGASCOPIC IDENTIFICATION OF THE FOLLOWING ROCKS

Granite, Graphic granite, Pegmatite, Aplite, Schorl Rock, Granite Porphyry, Syenite, Syenite porphyry, Diorite, Gabbro, Anorthosite, Dunite, Pyroxenite, Dolerite, Diabase Porphyry, Basalt, Trachyte, Rhyolite, Obsidian, Pumice, Scoria. Conglomerate, Breccia, Sandstone, Arkose, Shale, Limestone, Laterite, Peat, Lignite, Slate, Phyllite, Schists, Gneisses, Quartzite, Marble, Amphibolite, Ecologite, Leptynite, Charnockite, Khondalite, Calc – Granulite and Basic Granulite.

MICROSCOPIC IDENTIFICATION AND DESCRIPTION OF THE FOLLOWING ROCKS

Mica Granite, Hornblende Granite, Tourmaline Granite, Schorl Rock, Aplite, Graphic Granite, Mica Syenite, Hornblende Syenite, NephelineSyenite, Diorite, Gabbro, Norite, Dunite, Peridotite, Granite – porphyry. Syenite – porphyry, Diorite – porphyry, dolerite, minette, Vogasite, Anorthosite, Trachyte, Andesite, basalt, phonolite, volcanic Breccia, vitrophyre, conglomerate, Breccia, sandstone, Arkose, shale limestone, slate, chlorite schist, mica schist, Kyanite schist, Staurolite schist, garnetiferous schist, Glaucophane schist, Granulite, Charnockite, Ecologite Amphibolite, Leptynite, khondalite, Cordierite, gneiss, garnet – Sillimanite gneiss CalcGranulite.

ECONOMIC GEOLOGY:-

MEGASCOPIC IDENTIFICATION AND DESCRIPTION, INDIAN OCCURRENCES AND USES OF THE FOLLOWING ORE AND INDUSTRIAL MINERALS

Realgar, Orpiment, Stibnite, Molybdenite, Galena, Sphalerite, Cinnabar, Covelite, Bornite, Chalcophyrite, Pyrite, Arsenopyrite, Marcasite, Barite, Celestite, Gypsum, Cuprite, Zincite, Corundum, Hematite, Ilmenite, Magnetite, Chromite, Franklinite, Cassiterite, Rutile, Pyrolusite, Psilomelane, Goethite, Limonite, Bauxite, Calcite, Dolomite, Magnesite, Siderite, Aragonite, Witherite, Strontionite, Cerussite, Azurite, Malachite, Chrysocolla, Columbite, Halite, Fluorite, Phosphatic Nodule, Monazite, Graphite, Coal and its varieties.

Course Outcomes

On completion of the course students should be able to

- CO 1: Students able to identify the megascopic minerals in thefield.
- CO 2: Understand the microscopic thin section ofrocks.
- CO 3: Students able to identify the ore minerals in the field.
- CO 4: Understand the various uses of economicminerals.
- CO 5: Students able to identify industrial ore minerals.

СО	РО				PSO					
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	S	S	S	S	S	S	Μ	S	S	S
CO 2	S	S	S	S	S	S	М	S	S	S
CO 3	S	S	S	S	S	S	М	S	S	S
CO 4	S	S	S	S	S	S	М	S	S	S
CO 5	S	S	S	S	S	S	М	S	S	S

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

- **S** Strongly Correlated
- **M** Moderately Correlated
- W-Weakly Correlated
- **N No Correlation**

Semester-VI /	Mineral Prospecting and Field	Course Code: BGE5
Major Based Elective – III	Geology	
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks: 25	External Marks: 75	Total Marks: 100

Cognitive	K1-Acquire / Remember					
Level	K2-Understanding					
	K3-Apply K4-Analyze					
	K5-Evaluate					
	K6-Create					
Course	• To study the various mineral prospecting.					
Objectives	• To study the various sampling methods.					
	• To study the various geophysical exploration techniques.					
	• To understand the mapping techniques.					
	• To know the geological symbols and preparation of field repo	orts.				
UNIT	CONTENT	HOURS				
Ι	MINERAL PROSPECTING	15				
	Geological Exploration: Criteria controlling the choice of sites for					
	geological prospecting- Marginal information of toposheets					
	Sampling methods:-channel sampling, bulk sampling and Core					
	sampling, Coning and Quartering. Various types of drilling					
	methods, their applications and limitations.					
II	GEOPHYSICAL EXPLORATION	15				
	A concise account of limitations and applications of various					
	geophysical exploration methods. The principles involved,					
	instruments used in electrical, magnetic, seismic, gravity and					
	radioactive methods of prospecting.					
III	GEOCHEMICAL EXPLORATION	15				
	Introduction – General principles of geochemical Prospecting.					
	Geochemical dispersion. Geochemical anomaly; background and					
	threshold values; Brief introduction to Pedo-geochemical, Hydro-					

	geochemical, lithogeochemical and Bio-geo chemical methods.	
IV	FIELD GEOLOGY Different types of field mapping technique: quarry mapping, structural mapping, lithologic mapping. Sampling techniques – oriented sample collection, paleontological sample collection, sediment sample technique, core sampling, trench sampling, aquatic sampling and soil sampling.	15
V	DRILLING Types of drills and methods of drilling. Geological maps, their preparation and uses. Preparation of geological field report-Symbols used for various geological features. Elements of geological field diary.	15

- 1. Mathur S.M. (2001). Guide to Field Geology: Prentice Hall ofIndia.
- RamachandraRao M.B (1975). Outlines of Geophysical Prospecting EnglishBook Depot,Dehradun.
- Dobrin M.B.(1981). Introduction to Geophysical prospecting. McGraw HillInternational BookCompany.
- 4. Kearey.P and Brooks.M (1984). An Introduction to Geophysical Exploration-ELBS.
- Hawkes H.E. and Webb. U.S (1962). Geochemistry in mineral Exploration. Harer& Row.

Reference Books:

- 1. Mason.B (1966); Principles of Geochemistry WilleyToppan.
- 2. Robinson. E.S. and Coruh.C. (2002). BasicExploration
- 3. Arogyaswamy, R.N.P: Courses in Mining Geology Oxford & IBH, NewDelhi.
- 4. Thamus, P.J. 1979. An introduction to mining, Methun.
- 5. McKinstry, H.E 1960 Mining Geology, NewYork.

Course Outcome:

On completion of the course students should be able to

- CO 1: Students able to collect sampling in thefield.
- CO 2: To understand and able to interpret the geologicalmap.

CO 3: Students able to write the field report.

- CO 4: Student would understand the detailed Geophysics and geochemicalexploration
- CO5: To understand student would able to mineral prospecting and drilling technology

Mapping of Course outcomes with Programme outcomes/ Programmes Specific outcomes

СО	РО				PSO					
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	М	S	S	S	S	S	S	S	S	S
CO 2	М	S	S	S	S	S	S	S	S	S
CO 3	М	S	S	S	S	S	S	S	S	S
CO 4	М	S	S	S	S	S	S	S	S	S
CO 5	М	S	S	S	S	S	S	S	S	S

S – Strongly Correlated

M – Moderately Correlated

W – Weakly Correlated

FIELD TRAINING PROGRAMME

As an essential part of the course, students should be taken for a fieldtrainingprogramme during an academic year.

First Year

Students should be taken on a local field trip to study the elementary aspects of geomorphology, structural geology, for about a week and submit are port thereon.

Second Year

Study of Palaeontological and Stratigraphically interested areas and collection of fossils. Student should submit a field report along withcollections at the time of practical examinations: Duration of visit about 10days.

Third Year

Visit to geologically interested and mineralized zones of India. Mine visit and collection of minerals and rocks. Duration of visit is 15 days.